如何精简 Prometheus 的指标和存储占用
前言
随着 Prometheus 监控的组件、数量、指标越来越多,Prometheus 对计算性能的要求会越来越高,存储占用也会越来越多。
在这种情况下,要优化 Prometheus 性能, 优化存储占用. 第一时间想到的可能是各种 Prometheus 的兼容存储方案, 如 Thanos 或 VM、Mimir 等。但是实际上虽然集中存储、长期存储、存储降采样及存储压缩可以一定程度解决相关问题,但是治标不治本。
- 真正的本,还是在于指标量(series)过于庞大。
- 治本之法,应该是减少指标量。有 2 种办法:
- Prometheus 性能调优 - 解决高基数问题
- 根据实际使用情况,只保留(keep)展示(Grafana Dashboards)和告警(prometheus rules)会用到的指标。
本次重点介绍第二种办法:如何根据实际的使用情况精简 Prometheus 的指标和存储占用?
思路
- 分析当前 Prometheus 中存储的所有的 metric name(指标项);
- 分析展示环节用到的所有 metric name,即 Grafana 的 Dashboards 用到的所有指标;
- 分析告警环节用到的所有 metric name,即 Prometheus Rule 配置中用到的所有指标;
- (可选)分析诊断环境用到的所有 metric name,即经常在 Prometheus UI 上 query 的指标;
- 通过
relabel在metric_relabel_configs或write_relabel_configs仅keep2-4 中的指标, 以此大幅减少 Prometheus 需要存储的指标量.
要具体实现这个思路, 可以通过 Grafana Labs 出品的 mimirtool 来搞定.
我这里有个前后的对比效果, 可供参考这样做效果有多惊人:
- 精简前: 270336 活动 series
- 精简后: 61055 活动 series
- 精简效果: 将近 5 倍的精简率!
Grafana Mimirtool
Grafana Mimir 是一款以对象存储为存储方式的 Prometheus 长期存储解决方案, 从 Cortex 演化而来. 官方号称支持亿级别的 series 写入存储和查询.
Grafana Mimirtool 是 Mimir 发布的一个实用工具, 可单独使用.
Grafana Mimirtool 支持从以下方面提取指标:
- Grafana 实例中的Grafana Dashboards(通过 Grafana API)
- Mimir 实例中的 Prometheus alerting 和 recording rules
- Grafana Dashboards JSON文件
- Prometheus记alerting 和 recording rules 的 YAML文件
然后,Grafana Mimirtool可以将这些提取的指标与Prometheus或Cloud Prometheus实例中的活动 series 进行比较,并输出一个 used 指标和 unused 指标的列表。
Prometheus 精简指标实战
假设
假定:
- 通过kube-prometheus-stack 安装 Prometheus
- 已安装 Grafana 且作为展示端
- 已配置相应的 告警规则
- 除此之外, 无其他需要额外保留的指标
前提
- Grafana Mimirtool 从 releases 中找到 mimirtool 对应平台的版本下载即可使用;
- 已创建 Grafana API token
- Prometheus已安装和配置.
第一步: 分析 Grafana Dashboards 用到的指标
通过 Grafana API
具体如下:
# 通过 Grafana API分析 Grafana 用到的指标
# 前提是现在 Grafana上创建 API Keys
mimirtool analyze grafana --address http://172.16.0.20:32651 --key=eyJrIjoiYjBWMGVoTHZTY3BnM3V5UzNVem9iWDBDSG5sdFRxRVoiLCJuIjoibWltaXJ0b29sIiwiaWQiOjF9
说明:
http://172.16.0.20:32651是 Grafana 地址--key=eyJr是 Grafana API Token. 通过如下界面获得:

获取到的是一个 metrics-in-grafana.json, 内容概述如下:
{
"metricsUsed": [
":node_memory_MemAvailable_bytes:sum",
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",
"alertmanager_notification_latency_seconds_bucket",
"alertmanager_notification_latency_seconds_count",
"alertmanager_notification_latency_seconds_sum",
"alertmanager_notifications_failed_total",
"alertmanager_notifications_total",
"cluster",
"cluster:namespace:pod_cpu:active:kube_pod_container_resource_limits",
"cluster:namespace:pod_cpu:active:kube_pod_container_resource_requests",
"cluster:namespace:pod_memory:active:kube_pod_container_resource_limits",
"cluster:namespace:pod_memory:active:kube_pod_container_resource_requests",
"cluster:node_cpu:ratio_rate5m",
"container_cpu_cfs_periods_total",
"container_cpu_cfs_throttled_periods_total",
"..."
],
"dashboards": [
{
"slug": "",
"uid": "alertmanager-overview",
"title": "Alertmanager / Overview",
"metrics": [
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",
"alertmanager_notification_latency_seconds_bucket",
"alertmanager_notification_latency_seconds_count",
"alertmanager_notification_latency_seconds_sum",
"alertmanager_notifications_failed_total",
"alertmanager_notifications_total"
],
"parse_errors": null
},
{
"slug": "",
"uid": "c2f4e12cdf69feb95caa41a5a1b423d9",
"title": "etcd",
"metrics": [
"etcd_disk_backend_commit_duration_seconds_bucket",
"etcd_disk_wal_fsync_duration_seconds_bucket",
"etcd_mvcc_db_total_size_in_bytes",
"etcd_network_client_grpc_received_bytes_total",
"etcd_network_client_grpc_sent_bytes_total",
"etcd_network_peer_received_bytes_total",
"etcd_network_peer_sent_bytes_total",
"etcd_server_has_leader",
"etcd_server_leader_changes_seen_total",
"etcd_server_proposals_applied_total",
"etcd_server_proposals_committed_total",
"etcd_server_proposals_failed_total",
"etcd_server_proposals_pending",
"grpc_server_handled_total",
"grpc_server_started_total",
"process_resident_memory_bytes"
],
"parse_errors": null
},
{...}
]
}
(可选)通过 Grafana Dashboards json 文件
如果无法创建 Grafana API Token, 只要有 Grafana Dashboards json 文件, 也可以用来分析, 示例如下:
# 通过 Grafana Dashboard json 分析 Grafana 用到的指标
mimirtool analyze dashboard grafana_dashboards/blackboxexporter-probe.json
mimirtool analyze dashboard grafana_dashboards/es.json
得到的 json 结构和上一节类似, 就不赘述了.
第二步: 分析 Prometheus Alerting 和 Recording Rules 用到的指标
具体操作如下:
# (可选)通过 kubectl cp 将用到的 rule files 拷贝到本地
kubectl cp <prompod>:/etc/prometheus/rules/<releasename>-kube-prometheus-st-prometheus-rulefiles-0 -c prometheus ./kube-prometheus-stack/rulefiles/
# 通过 Prometheus rule files 分析 Prometheus Rule 用到的指标(涉及 recording rule 和 alert rules)
mimirtool analyze rule-file ./kube-prometheus-stack/rulefiles/*
结果如下 metrics-in-ruler.json:
{
"metricsUsed": [
"ALERTS",
"aggregator_unavailable_apiservice",
"aggregator_unavailable_apiservice_total",
"apiserver_client_certificate_expiration_seconds_bucket",
"apiserver_client_certificate_expiration_seconds_count",
"apiserver_request_terminations_total",
"apiserver_request_total",
"blackbox_exporter_config_last_reload_successful",
"..."
],
"ruleGroups": [
{
"namspace": "default-monitor-kube-prometheus-st-kubernetes-apps-ae2b16e5-41d8-4069-9297-075c28c6969e",
"name": "kubernetes-apps",
"metrics": [
"kube_daemonset_status_current_number_scheduled",
"kube_daemonset_status_desired_number_scheduled",
"kube_daemonset_status_number_available",
"kube_daemonset_status_number_misscheduled",
"kube_daemonset_status_updated_number_scheduled",
"..."
]
"parse_errors": null
},
{
"namspace": "default-monitor-kube-prometheus-st-kubernetes-resources-ccb4a7bc-f2a0-4fe4-87f7-0b000468f18f",
"name": "kubernetes-resources",
"metrics": [
"container_cpu_cfs_periods_total",
"container_cpu_cfs_throttled_periods_total",
"kube_node_status_allocatable",
"kube_resourcequota",
"namespace_cpu:kube_pod_container_resource_requests:sum",
"namespace_memory:kube_pod_container_resource_requests:sum"
],
"parse_errors": null
},
{...}
]
}
第三步: 分析没用到的指标
具体如下:
# 综合分析 Prometheus 采集到的 VS. (展示(Grafana Dashboards) + 记录及告警(Rule files))
mimirtool analyze prometheus --address=http://172.16.0.20:30090/ --grafana-metrics-file="metrics-in-grafana.json" --ruler-metrics-file="metrics-in-ruler.json"
说明:
--address=http://172.16.0.20:30090/为 prometheus 地址--grafana-metrics-file="metrics-in-grafana.json"为第一步得到的 json 文件--ruler-metrics-file="kube-prometheus-stack-metrics-in-ruler.json"为第二步得到的 json 文件
输出结果prometheus-metrics.json 如下:
{
"total_active_series": 270336,
"in_use_active_series": 61055,
"additional_active_series": 209281,
"in_use_metric_counts": [
{
"metric": "rest_client_request_duration_seconds_bucket",
"count": 8855,
"job_counts": [
{
"job": "kubelet",
"count": 4840
},
{
"job": "kube-controller-manager",
"count": 1958
},
{...}
]
},
{
"metric": "grpc_server_handled_total",
"count": 4394,
"job_counts": [
{
"job": "kube-etcd",
"count": 4386
},
{
"job": "default/kubernetes-ebao-ebaoops-pods",
"count": 8
}
]
},
{...}
],
"additional_metric_counts": [
{
"metric": "rest_client_rate_limiter_duration_seconds_bucket",
"count": 81917,
"job_counts": [
{
"job": "kubelet",
"count": 53966
},
{
"job": "kube-proxy",
"count": 23595
},
{
"job": "kube-scheduler",
"count": 2398
},
{
"job": "kube-controller-manager",
"count": 1958
}
]
},
{
"metric": "rest_client_rate_limiter_duration_seconds_count",
"count": 7447,
"job_counts": [
{
"job": "kubelet",
"count": 4906
},
{
"job": "kube-proxy",
"count": 2145
},
{
"job": "kube-scheduler",
"count": 218
},
{
"job": "kube-controller-manager",
"count": 178
}
]
},
{...}
]
}
第四步: 仅 keep 用到的指标
在 write_relabel_configs 环节配置
如果你有使用 remote_write, 那么直接在 write_relabel_configs 环节配置 keep relabel 规则, 简单粗暴.
可以先用 jp 命令得到所有需要 keep 的metric name:
jq '.metricsUsed' metrics-in-grafana.json \
| tr -d '", ' \
| sed '1d;$d' \
| grep -v 'grafanacloud*' \
| paste -s -d '|' -
输出结果类似如下:
instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up
然后直接在 write_relabel_configs 环节配置 keep relabel 规则:
remote_write:
- url: <remote_write endpoint>
basic_auth:
username: <按需>
password: <按需>
write_relabel_configs:
- source_labels: [__name__]
regex: instance:node_cpu_utilisation:rate1m|instance:node_load1_per_cpu:ratio|instance:node_memory_utilisation:ratio|instance:node_network_receive_bytes_excluding_lo:rate1m|instance:node_network_receive_drop_excluding_lo:rate1m|instance:node_network_transmit_bytes_excluding_lo:rate1m|instance:node_network_transmit_drop_excluding_lo:rate1m|instance:node_vmstat_pgmajfault:rate1m|instance_device:node_disk_io_time_seconds:rate1m|instance_device:node_disk_io_time_weighted_seconds:rate1m|node_cpu_seconds_total|node_disk_io_time_seconds_total|node_disk_read_bytes_total|node_disk_written_bytes_total|node_filesystem_avail_bytes|node_filesystem_size_bytes|node_load1|node_load15|node_load5|node_memory_Buffers_bytes|node_memory_Cached_bytes|node_memory_MemAvailable_bytes|node_memory_MemFree_bytes|node_memory_MemTotal_bytes|node_network_receive_bytes_total|node_network_transmit_bytes_total|node_uname_info|up
action: keep
在 metric_relabel_configs 环节配置
如果没有使用 remote_write, 那么只能在 metric_relabel_configs 环节配置了.
以 etcd job 为例: (以 prometheus 配置为例, Prometheus Operator 请自行按需调整)
- job_name: serviceMonitor/default/monitor-kube-prometheus-st-kube-etcd/0
honor_labels: false
kubernetes_sd_configs:
- role: endpoints
namespaces:
names:
- kube-system
scheme: https
tls_config:
insecure_skip_verify: true
ca_file: /etc/prometheus/secrets/etcd-certs/ca.crt
cert_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.crt
key_file: /etc/prometheus/secrets/etcd-certs/healthcheck-client.key
relabel_configs:
- source_labels:
- job
target_label: __tmp_prometheus_job_name
- ...
metric_relabel_configs:
- source_labels: [__name__]
regex: etcd_disk_backend_commit_duration_seconds_bucket|etcd_disk_wal_fsync_duration_seconds_bucket|etcd_mvcc_db_total_size_in_bytes|etcd_network_client_grpc_received_bytes_total|etcd_network_client_grpc_sent_bytes_total|etcd_network_peer_received_bytes_total|etcd_network_peer_sent_bytes_total|etcd_server_has_leader|etcd_server_leader_changes_seen_total|etcd_server_proposals_applied_total|etcd_server_proposals_committed_total|etcd_server_proposals_failed_total|etcd_server_proposals_pending|grpc_server_handled_total|grpc_server_started_total|process_resident_memory_bytes|etcd_http_failed_total|etcd_http_received_total|etcd_http_successful_duration_seconds_bucket|etcd_network_peer_round_trip_time_seconds_bucket|grpc_server_handling_seconds_bucket|up
action: keep
不用 keep 而使用 drop
同样滴, 不用 keep 而改为使用 drop 也是可以的. 这里不再赘述.
总结
本文中,介绍了精简 Prometheus 指标的需求, 然后说明如何使用 mimirtool analyze 命令来确定Grafana Dashboards 以及 Prometheus Rules 中用到的指标。然后用 analyze prometheus 分析了展示和告警中used 和 unused 的活动 series,最后配置了 Prometheus 以仅 keep 用到的指标。
结合这次实战, 精简率可以达到 5 倍左右, 效果还是非常明显的. 推荐试一试. ️️️
️ 参考文档
- grafana/mimir: Grafana Mimir provides horizontally scalable, highly available, multi-tenant, long-term storage for Prometheus. (github.com)
- Analyzing and reducing metrics usage with Grafana Mimirtool | Grafana Cloud documentation
本文由东风微鸣技术博客 EWhisper.cn 编写!
如何精简 Prometheus 的指标和存储占用的更多相关文章
- Qemu/Limbo/KVM镜像 最精简Linux+Wine,可运行Windows软件,内存占用不到70M,存储占用500M
镜像特征: Alpine Edge系统 内置Wine 7.8,可运行大量Windows 软件 高度精简,内存占用仅68MB,存储占用仅500MB 完全开源 镜像说明: 用户名为root,密码为空格. ...
- 存储占用:Memory Map 汉化去广告版
转载说明 本篇文章可能已经更新,最新文章请转:http://www.sollyu.com/storage-occupancy-memory-map-localization-to-billboards ...
- Prometheus自定义指标
1. 自定义指标 为了注册自定义指标,请将MeterRegistry注入到组件中,例如: public class Dictionary { private final List<String ...
- prometheus搜索指标显示No datapoints found.
在指标能够在下拉框可以选择到的情况下,还有No datapoints found. 则考虑是时区的问题,详见官方issue https://github.com/prometheus/promethe ...
- mysql 编码和汉字存储占用字节问题的探索
MySql 5.5 之前,UTF8 编码只支持1-3个字节,只支持BMP这部分的unicode编码区,BMP是从哪到哪?基本就是 0000 ~ FFFF 这一区. 从MySQL 5.5 开始,可支持4 ...
- 剖析Prometheus的内部存储机制
Prometheus有着非常高效的时间序列数据存储方法,每个采样数据仅仅占用3.5byte左右空间,上百万条时间序列,30秒间隔,保留60天,大概花了200多G(引用官方PPT). 接下来让我们看看他 ...
- Prometheus存储模型分析
Prometheus是时下最为流行的开源监控解决方案,我们可以很轻松地以Prometheus为核心快速构建一套包含监控指标的抓取,存储,查询以及告警的完整监控系统.单个的Prometheus实例就能实 ...
- 部署prometheus监控kubernetes集群并存储到ceph
简介 Prometheus 最初是 SoundCloud 构建的开源系统监控和报警工具,是一个独立的开源项目,于2016年加入了 CNCF 基金会,作为继 Kubernetes 之后的第二个托管项目. ...
- Prometheus监控学习笔记之Prometheus存储
0x00 概述 Prometheus之于kubernetes(监控领域),如kubernetes之于容器编排.随着heapster不再开发和维护以及influxdb 集群方案不再开源,heapster ...
- Prometheus监控学习笔记之prometheus的远端存储
0x00 概述 prometheus在容器云的领域实力毋庸置疑,越来越多的云原生组件直接提供prometheus的metrics接口,无需额外的exporter.所以采用prometheus作为整个集 ...
随机推荐
- KingbaseES V8R6单实例外部备份故障案例
案例说明: 在KingbaseES V8R6单实例环境,配置外部备份服务器使用sys_backup.sh物理备份时,出现以下"WAL segment xxx was not archived ...
- 新增 Oracle 兼容函数-V8R6C4B0021
KingbaseES V8R6C4B0021新增加以下Oracle 兼容函数. 一.bin_to_num Oracle bin_to_num 函数用于将二进制位转换成十进制的数. 1.传入参数 tes ...
- GitHub desktop常见问题及解决办法
1.There are unresolved conflicts in the working directory. 问题出现:A台电脑push代码后,可能新建了分支,然后B电脑打开GitHub de ...
- Java开发学习(三十五)----SpringBoot快速入门及起步依赖解析
一.SpringBoot简介 SpringBoot 是由 Pivotal 团队提供的全新框架,其设计目的是用来简化 Spring 应用的初始搭建以及开发过程. 使用了 Spring 框架后已经简化了我 ...
- ES配置生成SSL使用的证书
cd /usr/local/elasticsearch/bin/ ./elasticsearch-certgen ##################################### Pleas ...
- 使用工具SecureCRT通过ssh远程连接Windows server 2019
Windows Server 2019 开通SSH Server服务 在需要安裝的ws2019开启powershell,执行安装 openssh server 指令 Add-WindowsCapabi ...
- 基于CentOS 8服务器来搭建FastDFS高可用集群环境
服务器版本 我们在服务器的命令行输入如下命令来查看服务器的内核版本. [root@localhost lib]# cat /etc/redhat-release CentOS Linux releas ...
- 使用DBeaver Enterprise连接redis集群的一些操作记录
要点总结: 使用DBeaver Enterprise连接redis集群可以通过SQL语句查看key对应的value,但是没法查看key. 使用RedisDesktopManager连接redis集群可 ...
- @input含义和用法
@input :一般用于监听事件只要输入的值变化了就会触发input 示例: <div id="div1"> <input type="text&quo ...
- Java学习之路:HelloWorld
2022-10-08 16:13:57 HelloWorld 1. 随便新建一个文件夹,存放代码 2. 新建一个Java文件 文件后缀名为.java hello.java 注意:系统没有显示后 ...