----普通莫队

首先
清楚概率怎么求
假设我们要求从区间l到r中拿出一对袜子的概率
sum[i]为第i种袜子在l到r中的数量

$$\frac{\sum_{i=l}^{r} {[sum[i] \times (sum[i]-1)]}}{ (r-l+1) \times {(r-l)}}\qquad$$

转化一下可以得到

$$\frac{\sum_{i=l}^{r} {sum[i]^{2}}-(r-l+1)}{ (r-l+1)\times {(r-l)}}\qquad$$

普通莫队是一种离线算法 并且充分利用上一个得到的答案来求得当前询问的答案

怎么由上一个答案来得到当前的答案呢?

$$ans=\sum_{i=l}^{r} {sum[i]^{2}}$$

即分母的一部分(减去(r-l+1)即可得到分母)

现在要求[l+1,r]这个区间的答案
若第l只袜子的编号为x 则只有sum[x]减少了1
更新ans的操作如下:
ans-=sum[x]*sum[x];
sum[x]-=1;
ans+=sum[x]*sum[x]
即:减去从前对答案的贡献 加上现在的贡献
求[l-1,r],[l,r-1],[l,r+1]的做法类比可得
整理一下可以得到change函数

//x为新增加或减少的点
//若为新增加的点 如l指针左移和r指针右移 则w=1
//反之 w=-1
/*例子:求[l-1,r] change(l,-1)
求[l,r+1] change(r+1,1) ……*/
change(int x,int w)
{
ans-=sum[x]*sum[x];sum[x]+=w;ans+=sum[x]*sum[x];
}

 

为了使l和r指针尽可能少的移动(优化时间)
我们需要给所有的问题的l和r排序

构造cmp函数
要用分块

将整个长度为n的序列分为sqrt(n)块
cmp为:若l与r在同一块中 则按照l从小到大排序
      否则 按照r从小到大排序
这样l指针每次最多跳2*(n/sqrt(n))次
最后求gcd 即可
还要记得l==r的特判

一种优秀的gcd求法

//普通gcd
int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}

其实可以看成是把x赋值为x%y 再调换x,y的位置 求gcd(x,y)
假设我们要调换a,b的值

//普通做法:
int tmp;tmp=a;a=b;b=tmp; //其实可以利用位运算 异或
x^=y;y^=x;x^=y; /* 第一步:x=x^y
第二步:y=y^(x^y) 由于y^y=0 所以 y=x
第三步:x=(x^y)^x 同理可得 x=y
*/

可以得到gcd函数

ll gcd(ll a,ll b)
{
while(b^=a^=b^=a%=b);return a;
}
//从右至左运算

分析over

code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#define ll long long
#define yes(i,a,b) for(register int i=a;i<=b;i++)
#define M 50010
using namespace std;
int n,m,tot,len;
ll ans,f_ans[M][2],sum[M];
int c[M],be[M];
struct node {int l,r,id;} q[M];
bool cmp(node x,node y)
{
if(be[x.l]==be[y.l]) return x.r<y.r;
return x.l<y.l;
}
void change(int x,int w)
{
ans-=(ll)(sum[c[x]]*sum[c[x]]);sum[c[x]]+=w;ans+=(ll)(sum[c[x]]*sum[c[x]]);
}
ll gcd(ll a,ll b)
{
while(b^=a^=b^=a%=b);return a;
}
int main()
{
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout);
scanf("%d%d",&n,&m);
len=sqrt(n);
yes(i,1,n) scanf("%d",&c[i]),be[i]=i/len+1;
yes(i,1,m) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;
sort(q+1,q+m+1,cmp);
int l=1,r=0;
yes(i,1,m)
{
while(l<q[i].l) change(l,-1),l++;
while(l>q[i].l) change(l-1,1),l--;
while(r<q[i].r) change(r+1,1),r++;
while(r>q[i].r) change(r,-1),r--;
ll ans1,ans2;
ans1=ans-(ll)(q[i].r-q[i].l+1);ans2=(ll)(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
if(ans1==0) ans2=1;
else
{
ll g=gcd(ans2,ans1);
ans1/=g;ans2/=g;
}
f_ans[q[i].id][0]=ans1;f_ans[q[i].id][1]=ans2;
}
yes(i,1,m) printf("%lld/%lld\n",f_ans[i][0],f_ans[i][1]);
return 0;
}

莫队-小Z的袜子的更多相关文章

  1. 初识莫队——小Z的袜子

    以前一直觉得莫队是多么高大上的一种算法,然而仔细看了下发现其实并不复杂,实质上就是技巧性的暴力美学. 在我看来莫队是一种分块排序后降低复杂度的算法,当答案可以通过左右端点一个一个移动维护出来的时候就可 ...

  2. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  3. 莫队算法 2038: [2009国家集训队]小Z的袜子(hose)

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038 2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 ...

  4. BZOJ-2038 小Z的袜子(hose) 莫队算法

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 5573 Solved: 2568 [Subm ...

  5. BZOJ 2038 [2009国家集训队]小Z的袜子 莫队

    2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...

  6. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  7. BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3577  Solved: 1652[Subm ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

随机推荐

  1. 类似jq的即点即改

    <?php namespace app\controllers; use Yii;use yii\filters\AccessControl;use yii\web\Controller;use ...

  2. JS 随机整数

    <script>   function GetRandomNum(Min,Max){   var Range = Max - Min;   var Rand = Math.random() ...

  3. response和request的setCharacterEncoding区别

    一.request.setCharacterEncoding():是设置从request中取得的值或从数据库中取出的值. 指定后可以通过getParameter()则直接获得正确的字符串,如果不指定, ...

  4. NLP & 中文分词

    NLP & 中文分词 中文分词 (Word Segmentation, WS) 指的是将汉字序列切分成词序列. 中文自然语言处理系统 https://www.ltp-cloud.com/int ...

  5. vue & keep-alive & activated

    vue & keep-alive & activated vue 生命周期 钩子函数 缓存 http://www.cnblogs.com/nekoooo/p/6442077.html ...

  6. Redis 基础:Redis 配置

    Redis 配置 Redis的配置文件位于Redis安装目录下,文件名为redis.conf.可以通过CONFIG命令查看或设置配置项.其语法为: # Redis CONFIG命令格式如下: > ...

  7. 手写简单的promise

    function Promise(fn) { var that = this; this.status = "pedding"; this.value = undefined; / ...

  8. 【刷题】BZOJ 2190 [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  9. [LOJ3049] [十二省联考 2019] 字符串问题

    题目链接 LOJ:https://loj.ac/problem/3049 洛谷:https://www.luogu.org/problemnew/show/P5284 BZOJ:https://www ...

  10. Java的顺序栈和链式栈

    栈的定义 栈是限制在表的一段进行插入和删除的运算的线性表,通常能够将插入.删除的一端为栈顶,例外一端称为栈底,当表中没有任何元素的时候称为空栈. 通常删除(又称"退栈")叫做弹出p ...