题意

题目链接

分析

  • 分数规划之后可以得到式子:\(max-min-r*mid+l*mid\geq k*mid\) .

  • 贪心选择,肯定区间的端点是极小或者极大值。特殊处理区间长度 \(\leq L\) 的情况。

  • 有两种情况分别对应 \(r\) 作为最大和最小值。

    • \(r\) 作为最大值:枚举 \(a_r-r*mid\),查询 \(min\{a_l-l*mid\}\)并减去.
    • \(r\) 作为最小值:枚举 \(a_l+l*mid\),查询 \(min\{a_r+r*mid\}\)并减去.
  • 单调队列优化优化查询,因为如果一个点不是最后答案的话这个值一定比最优解大.

  • 总时间复杂度为\(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
#define re(x) memset(x,0,sizeof x)
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=5e4 + 7;
const double eps=1e-7;
int T,n,k,L,R,tl,hd;
int q[N],a[N],f[2][N][18];
void rmq_init(){
rep(i,1,n) f[0][i][0]=f[1][i][0]=a[i];
for(int k=1;1<<k<=n;++k)
for(int i=1;1<<k<=n-i+1;++i)
f[0][i][k]=min(f[0][i][k-1],f[0][i+(1<<k-1)][k-1]),
f[1][i][k]=max(f[1][i][k-1],f[1][i+(1<<k-1)][k-1]);
}
int query(int l,int r,int g){
int k=0;
for(;1<<k+1<=r-l+1;k++);
if(!g) return min(f[g][l][k],f[g][r-(1<<k)+1][k]);
return max(f[g][l][k],f[g][r-(1<<k)+1][k]);
}
bool check(double mid){
double ans=-1.0*(1e14);
for(int i=L;i<=n;++i) if(1.0*(query(i-L+1,i,1)-query(i-L+1,i,0))/(L-1+k)>=mid) return 1;
hd=1,tl=0;
rep(i,1,n-L+1){
for(;hd<=tl&&i-q[hd]>R-L;++hd);
for(;hd<=tl&&(a[q[tl]]-q[tl]*mid)>=(a[i]-i*mid);--tl);
q[++tl]=i;
Max(ans,(a[i+L-1]-(i+L-1)*mid)-(a[q[hd]]-q[hd]*mid));
}
hd=1,tl=0;
for(int i=n;i>=L;--i){
for(;hd<=tl&&q[hd]-i>R-L;++hd);
for(;hd<=tl&&(a[q[tl]]+q[tl]*mid)>=(a[i]+i*mid);--tl);
q[++tl]=i;
Max(ans,(a[i-L+1]+(i-L+1)*mid)-(a[q[hd]]+q[hd]*mid));
}
return ans>=k*mid;
}
void work(){
n=gi(),k=gi(),L=gi(),R=gi();
rep(i,1,n) a[i]=gi();a[n+1]=0;
rmq_init();
double l=0,r=1000;
while(r-l>eps){
double mid=(l+r)/2;
if(check(mid)) l=mid;
else r=mid;
}
printf("%.4lf\n",l);
}
int main(){
T=gi();
while(T--) work();
return 0;
}

[BZOJ4476][JSOI2015]送礼物[分数规划+单调队列]的更多相关文章

  1. 【BZOJ4476】[Jsoi2015]送礼物 分数规划+RMQ

    [BZOJ4476][Jsoi2015]送礼物 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物.萌萌的礼品店很神奇,所有出售的礼物都按照特定的顺序都排成 ...

  2. BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列

    BZOJ_4476_[Jsoi2015]送礼物_01分数规划+单调队列 Description JYY和CX的结婚纪念日即将到来,JYY来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店很神奇,所有出售的 ...

  3. P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表

    P6087 [JSOI2015]送礼物 01分数规划+单调队列+ST表 题目背景 \(JYY\) 和 \(CX\) 的结婚纪念日即将到来,\(JYY\) 来到萌萌开的礼品店选购纪念礼物. 萌萌的礼品店 ...

  4. [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表)

    [BZOJ4476] [JSOI2015] 送礼物 (01分数规划+ST表) 题面 给出n,k,l,r和序列a,要求从a中选一段连续的区间[i,j]出来,使得M(i,j)-m(i,j)/(j-i+k) ...

  5. BZOJ4476 JSOI2015送礼物(分数规划+单调队列)

    看到这个式子当然先二分答案.得max-min-(j-i+k)ans>=0. 显然max-min相同的情况下所选区间长度越短越好,所以max和min都应该取在边界.那么实际上我们根本不用管端点是否 ...

  6. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

  7. bzoj4476 [Jsoi2015]送礼物

    化简式子 $M>=m+ans*(r-l+k)$ 发现$M,m$确定时,总区间长度越小越好,于是假定右端点为最小值$M+ans*l>=m+ans*r+ans*k$, 右面都确定了,但最大值仍 ...

  8. 【BZOJ3316】JC loves Mkk 分数规划+单调队列

    [BZOJ3316]JC loves Mkk Description Input 第1行,包含三个整数.n,L,R.第2行n个数,代表a[1..n]. Output 仅1行,表示询问答案.如果答案是整 ...

  9. 【BZOJ 3316】JC loves Mkk 01分数规划+单调队列

    单调栈不断吞入数据维护最值,数据具有单调性但不保证位置为其排名,同时可以按照进入顺序找出临近较值单调队列队列两端均可删除数据但只有队末可以加入数据,仍然不断吞入数据但同时可以额外刨除一些不符合条件的数 ...

随机推荐

  1. Linux学习---Linux用户审计简单版

    [root@localhost root]# vim /etc/profile # SHENJI history USER=`whoami` USER_IP=`who -u am i 2>/de ...

  2. Python学习---爬虫学习[requests模块]180411

    模块安装 安装requests模块 pip3 install requests 安装beautifulsoup4模块 [更多参考]https://blog.csdn.net/sunhuaqiang1/ ...

  3. Linux 开机启动流程

    Linux的开机启动流程 1.开机BIOS自检                                             --> 检查CPU,硬盘等硬件信息 2.MBR[Major ...

  4. Windows:删除图标缓存

    适用于桌面快捷方式图标丢失或图标变成白色的情况,批处理代码如下: rem 关闭explorer.exe taskkill /f /im explorer.exe attrib -h -i %userp ...

  5. notepad快捷键大全

    Notepad++ 快捷键 大全Ctrl+C 复制Ctrl+X 剪切Ctrl+V 粘贴Ctrl+Z 撤消Ctrl+Y 恢复Ctrl+A 全选Ctrl+F 键查找对话框启动Ctrl+H 查找/替换对话框 ...

  6. HTML、jsp页面中radio,checkbox,select数据回显功能,默认被选中问题

    最近常常遇到各种复选框.单选框.下拉框的默认被选中的问题,开始也是绞尽脑汁的想办法,今天写一篇学习总结的博文来写一下学习总结. 单选框(radio)默认被选中: 一.jstl技术进行回显 <in ...

  7. Cloudera Manager 4.6 安装部署hadoop CDH集群

    Cloudera Manager 4.6 安装详解 1. Cloudera Manager介绍 1.1. 功能介绍 Cloudera Manager是一个针对hadoop集群的管理工具,功能包括:cd ...

  8. Undefined function or method 'deploywhich' for input arguments of type 'char'

    在进行matlab和java混合编程的时候.由matlab打包,把m文件转换为jar文件.供java调用.有时在Tomcat中调用此类jar类会出现如题或者以下的错误: ??? Error using ...

  9. vue部署到tomcat

    # vue打包到tomcat部署步骤a.进入项目目录运行npm run devb.将dist目录复制到远程服务器下的tomcat/webapps下c.重启tomcatd.浏览器中访问 http:本机i ...

  10. 1103. [POI2007]MEG-Megalopolis【树链剖分】

    Description 在经济全球化浪潮的影响下,习惯于漫步在清晨的乡间小路的邮递员Blue Mary也开始骑着摩托车传递邮件了. 不过,她经常回忆起以前在乡间漫步的情景.昔日,乡下有依次编号为1.. ...