Codeforces 804D Expected diameter of a tree
3 seconds
256 megabytes
standard input
standard output
Pasha is a good student and one of MoJaK's best friends. He always have a problem to think about. Today they had a talk about the following problem.
We have a forest (acyclic undirected graph) with n vertices and m edges. There are q queries we should answer. In each query two vertices v and u are given. Let V be the set of vertices in the connected component of the graph that contains v, and U be the set of vertices in the connected component of the graph that contains u. Let's add an edge between some vertex
and some vertex in
and compute the value d of the resulting component. If the resulting component is a tree, the value d is the diameter of the component, and it is equal to -1 otherwise. What is the expected value of d, if we choose vertices a and b from the sets uniformly at random?
Can you help Pasha to solve this problem?
The diameter of the component is the maximum distance among some pair of vertices in the component. The distance between two vertices is the minimum number of edges on some path between the two vertices.
Note that queries don't add edges to the initial forest.
The first line contains three integers n, m and q(1 ≤ n, m, q ≤ 105) — the number of vertices, the number of edges in the graph and the number of queries.
Each of the next m lines contains two integers ui and vi (1 ≤ ui, vi ≤ n), that means there is an edge between vertices ui and vi.
It is guaranteed that the given graph is a forest.
Each of the next q lines contains two integers ui and vi (1 ≤ ui, vi ≤ n) — the vertices given in the i-th query.
For each query print the expected value of d as described in the problem statement.
Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6. Let's assume that your answer is a, and the jury's answer is b. The checker program will consider your answer correct, if
.
3 1 2
1 3
3 1
2 3
-1
2.0000000000
5 2 3
2 4
4 3
4 2
4 1
2 5
-1
2.6666666667
2.6666666667
In the first example the vertices 1 and 3 are in the same component, so the answer for the first query is -1. For the second query there are two options to add the edge: one option is to add the edge 1 - 2, the other one is 2 - 3. In both ways the resulting diameter is 2, so the answer is 2.
In the second example the answer for the first query is obviously -1. The answer for the second query is the average of three cases: for added edges 1 - 2 or 1 - 3 the diameter is 3, and for added edge 1 - 4 the diameter is 2. Thus, the answer is
.
题意:
给出一个森林,q次询问,每次问把x,y两点所属的树之间任意连接一条边形成新的树的直径的期望,如果x和y在同一棵树中输出-1;
代码:
//这题算出复杂度也就解出来了。先枚举一棵树中的节点然后二分找另一棵树中的节点满足两个节点之间的距离不小于max(树1直径,
//树2直径),他们的贡献就是各自在自己树中最远能到达的端点的距离相加再+1,否则贡献就是max(树1直径,树2直径),这样看似是
//q*n*long(n),但是注意到所有的树的大小总和是n所以最坏是sqrt(n)棵树每棵树大小是sqrt(n),所以是q*sqrt(n)*long(n);
#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int MAXN=;
int fa[MAXN],head[MAXN],tot,n,cnt,m,q,d[MAXN],f[MAXN],deep,o,oo,root[MAXN];
int a[MAXN],aa;
double size[MAXN];
map<pair<int,int>,double>mp;
vector<ll>v[MAXN],vv[MAXN];
struct Edge { int u,v,next; }edge[MAXN*];
void init()
{
tot=cnt=;
memset(head,-,sizeof(head));
memset(fa,-,sizeof(fa));
memset(f,,sizeof(f));
memset(d,-,sizeof(d));
}
void add(int x,int y)
{
edge[tot].u=x;edge[tot].v=y;
edge[tot].next=head[x];
head[x]=tot++;
edge[tot].u=y;edge[tot].v=x;
edge[tot].next=head[y];
head[y]=tot++;
}
void dfs1(int x,int father,int p)
{
v[p].push_back(x);
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].v;
if(y==father) continue;
fa[y]=p;
dfs1(y,x,p);
}
}
void dfs2(int x,int father,int sum,bool w)
{
if(w!=) f[x]=max(f[x],sum);
if(sum>=deep){
deep=sum;
if(w==) o=x;
else if(w==) oo=x;
}
for(int i=head[x];i!=-;i=edge[i].next){
int y=edge[i].v;
if(y==father) continue;
dfs2(y,x,sum+,w);
}
}
int main()
{
//freopen("in.txt","r",stdin);
init();
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<m;i++){
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
}
for(int i=;i<=n;i++){
if(fa[i]!=-) continue;
fa[i]=++cnt;
v[cnt].clear();vv[cnt].clear();
dfs1(i,,cnt);
root[cnt]=i;
}
for(int i=;i<=cnt;i++){
deep=;
dfs2(root[i],,,);
deep=;
dfs2(o,,,);
d[i]=deep;
dfs2(oo,,,);
aa=v[i].size();
for(int j=;j<aa;j++) a[j]=f[v[i][j]];
v[i].clear();
for(int j=;j<aa;j++) v[i].push_back(a[j]);
sort(v[i].begin(),v[i].end());
a[aa]=;
for(int j=aa-;j>=;j--) a[j]=a[j+]+v[i][j]+;
for(int j=;j<=aa;j++) vv[i].push_back(a[j]);
}
while(q--){
int x,y;
scanf("%d%d",&x,&y);
if(fa[x]==fa[y]) printf("-1\n");
else{
pair<int,int>p1(fa[x],fa[y]);
if(mp[p1]>) printf("%.6f\n",mp[p1]);
else{
double ans=;
int xx=fa[x],yy=fa[y];
if(v[xx].size()<=v[yy].size()){
for(int i=;i<v[xx].size();i++){
ll tmp=lower_bound(v[yy].begin(),v[yy].end(),max(d[xx],d[yy])-v[xx][i]-)-v[yy].begin();
ans+=(vv[yy][tmp]+v[xx][i]*(v[yy].size()-tmp))+tmp*max(d[xx],d[yy]);
}
}else{
for(int i=;i<v[yy].size();i++){
ll tmp=lower_bound(v[xx].begin(),v[xx].end(),max(d[xx],d[yy])-v[yy][i]-)-v[xx].begin();
ans+=(vv[xx][tmp]+v[yy][i]*(v[xx].size()-tmp))+tmp*max(d[xx],d[yy]);
}
}
double tmp1=v[xx].size(),tmp2=v[yy].size();
ans/=(tmp1*tmp2);
printf("%.6f\n",ans);
mp[p1]=ans;
}
}
}
return ;
}
Codeforces 804D Expected diameter of a tree的更多相关文章
- Codeforces 804D Expected diameter of a tree(树的直径 + 二分 + map查询)
题目链接 Expected diameter of a tree 题目意思就是给出一片森林, 若把任意两棵树合并(合并方法为在两个树上各自任选一点然后连一条新的边) 求这棵新的树的树的直径的期望长度. ...
- Codeforces 804D Expected diameter of a tree(树形DP+期望)
[题目链接] http://codeforces.com/contest/804/problem/D [题目大意] 给你一个森林,每次询问给出u,v, 从u所在连通块中随机选出一个点与v所在连通块中随 ...
- Codeforces 840D Expected diameter of a tree 分块思想
Expected diameter of a tree 我们先两次dfs计算出每个点能到达最远点的距离. 暴力计算两棵树x, y连边直径的期望很好求, 我们假设SZ(x) < SZ(y) 我们枚 ...
- CodeForces 805F Expected diameter of a tree 期望
题意: 给出一个森林,有若干询问\(u, v\): 从\(u, v\)中所在子树中随机各选一个点连起来,构成一棵新树,求新树直径的期望. 分析: 回顾一下和树的直径有关的东西: 求树的直径 从树的任意 ...
- CF804D Expected diameter of a tree 树的直径 根号分治
LINK:Expected diameter of a tree 1e5 带根号log 竟然能跑过! 容易想到每次连接两个联通快 快速求出直径 其实是 \(max(D1,D2,f_x+f_y+1)\) ...
- Codeforces Round #411 (Div. 1) D. Expected diameter of a tree
题目大意:给出一个森林,每次询问给出u,v,问从u所在连通块中随机选出一个点与v所在连通块中随机选出一个点相连,连出的树的直径期望(不是树输出-1).(n,q<=10^5) 解法:预处理出各连通 ...
- codeforces804D Expected diameter of a tree
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 543. Diameter of Binary Tree
https://leetcode.com/problems/diameter-of-binary-tree/#/description Given a binary tree, you need to ...
- LeetCode 543. Diameter of Binary Tree (二叉树的直径)
Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a b ...
随机推荐
- Django_rest_framework_基础
简介 为什么要使用REST framework? Django REST framework 是一个强大且灵活的工具包,用以构建Web APIs. - 在线可视的API,对于赢得你的开发者们十分有用 ...
- 软件工程-东北师大站-第十二次作业(PSP)
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 4.本周PSP饼状图
- BugPhobia开发篇章:Scurm Meeting-更新至0x03
0x01 :目录与摘要 If you weeped for the missing sunset, you would miss all the shining stars 索引 提纲 整理与更新记录 ...
- Alpha阶段项目Postmortem会议总结
(一)设想和目标 1.我们的软件要解决什么问题?是否定义的很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件主要解决总是不知道在什么时间该做什么事情,或是老是忘记做一些事情的问题,通过添加事件 ...
- 树莓派与Arduino Leonardo使用NRF24L01无线模块通信之基于RF24库 (三) 全双工通信
设计思路 Arduino Leonardo初始化为发送模式,发送完成后,立即切换为接收模式,不停的监听,收到数据后立即切换为发送模式,若超过一定时间还为接收到数据,则切换为发送模式. 树莓派初始化为接 ...
- iOS开发面试题(中级)
//想面试的童鞋们来看看自己会多少, 老鸟可以无视直接绕过...1. Object-c的类可以多重继承么?可以实现多个接口么?Category是什么?重写一个类的方式用继承好还是分类好?为什么?与Ex ...
- C语言中Union类型的使用方法
转自:http://blog.csdn.net/feimor/article/details/6858103 使用C语言时,常常使用struct,对于union类型却几乎没有用过,只知道它是联合类型, ...
- elasticsearch文档-字段的mapping
mapping == Mapping是指定义如何将document映射到搜索引擎的过程,比如一个字段是否可以查询以及如何分词等,一个索引可以存储含有不同"mapping types" ...
- APP端测试与web端测试的区别
想要知道APP端测试与web端测试的区别 ,那么我们就要先来了解,web和app的区别. web项目,一般都是b/s架构,基于浏览器的,而app则是c/s的,必须要有客户端.那么在系统测试测试的时候就 ...
- windows多线程(十一) 更安全的创建线程方式_beginthreadex()
一.原因分析 CreateThread()函数是Windows提供的API接口,在C/C++语言另有一个创建线程的函数_beginthreadex(),我们应该尽量使用_beginthreadex() ...