扩展Lucas解决的还是一个很Simple的问题:

求:$C_{n}^{m} \; mod \; p$。

其中$n,m$都会比较大,而$p$不是很大,而且不一定是质数。

扩展Lucas可以说和Lucas本身并没有什么关系,重要的是中国剩余定理。扩展Lucas这个算法中教会我们的除了算组合数,还有在模数不是质数的时候,往往可以用$CRT$来合并答案。

将原模数质因数分解:$P = \prod\limits_{i = 1}^{m} p_{i}^{k_{i}}$。

列出$m$个同余方程,第$i$个形如:$C_{n}^{m} \; \equiv a_{i} (mod \; p_{i}^{k_{i}})$。

由于$m$个方程中模数互质,则$CRT$后就是原答案。

现在来对于某个方程求解$a_{i}$是多少,即$C_{n}^{m} \; mod \; p^{k}$的答案。

把组合数转化成阶乘:$\frac{n!}{m!(n - m)!}$,我们先求一个阶乘在$mod \; p^{k}$下的值,设这个函数为$Fac(n)$。

常规的对于式子下方的阶乘我们需要求逆元,而阶乘中存在$p$的倍数,这意味可能不与$p^{k}$互质。为了解决这个问题,我们将有关$p$单独考虑,于是一个算阶乘的函数将包括两部分:

  1. 首先考虑所有$p$的倍数,总共有$\lfloor \frac{n}{p} \rfloor$个,将$p$提出来,这$\lfloor \frac{n}{p} \rfloor$个数又成为一个阶乘的形式,递归即可,总层数不会超过$log$。这部分的答案就是$p^{\lfloor \frac{n}{p} \rfloor} * Fac(\lfloor \frac{n}{p} \rfloor)$。
  2. 剩下的数都将与$p^{k}$互质。我们考虑以$p^{k}$分块,我们可以证明每段$p^{k}$中所有不是$p$的倍数的数的乘积在模$p^{k}$意义下是相同的。具体原因在于$i + p^{k} \equiv i (mod \; p^{k})$。通过暴力计算,这部分的复杂度就是$O(p^{k})$的。

接下来就没有什么问题了,用扩展欧几里得求逆元,有关$p$的幂次在除法时指数相减就行了。

#include <cstdio>

typedef long long LL;

int P;

int Pow(int x, LL b, int p) {
static int re;
for (re = ; b; b >>= , x = (LL) x * x % p)
if (b & ) re = (LL) re * x % p;
return re;
}
int Ex_gcd(int a, int b, int &x, int &y) {
if (b == ) return x = , y = , a;
int gcd = Ex_gcd(b, a % b, y, x);
y -= a / b * x;
return gcd;
}
int Inv(int a, int p) {
static int x, y;
int gcd = Ex_gcd(a, p, x, y);
if (gcd != ) throw;
return (x % p + p) % p;
} int Fac(LL n, int p, int pk) {
if (n == ) return ;
int re = ;
for (int i = ; i <= pk; ++i)
if (i % p != ) re = (LL) re * i % pk;
re = Pow(re, n / pk, pk);
for (int i = ; i <= n % pk; ++i)
if (i % p != ) re = (LL) re * i % pk;
return (LL) re * Fac(n / p, p, pk) % pk;
} int Crt(LL n, LL m, int p, int pk) {
int fn = Fac(n, p, pk), fm = Fac(m, p, pk), fnm = Fac(n - m, p, pk);
int cp = ;
for (LL i = n; i; i /= p) cp += i / p;
for (LL i = m; i; i /= p) cp -= i / p;
for (LL i = n - m; i; i /= p) cp -= i / p;
int a = (LL) fn * Inv(fm, pk) % pk * Inv(fnm, pk) % pk * Pow(p, cp, pk) % pk;
return (LL) a * (P / pk) % P * Inv(P / pk, pk) % P;
} int Lucas(LL n, LL m, int p) {
int re = , x = p;
for (int i = ; i <= p; ++i) {
if (x % i != ) continue;
int pk = ;
while (x % i == ) pk *= i, x /= i;
re = (re + Crt(n, m, i, pk)) % p;
}
return re;
} int main() {
LL n, m;
scanf("%lld%lld%d", &n, &m, &P);
printf("%d\n", Lucas(n, m, P)); return ;
}

【科技】扩展Lucas随想的更多相关文章

  1. bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]

    4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...

  2. 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)

    J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...

  3. BZOJ_2142_礼物_扩展lucas+组合数取模+CRT

    BZOJ_2142_礼物_扩展lucas+组合数取模 Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同 ...

  4. 扩展CRT +扩展LUCAS

    再次感谢zyf2000超强的讲解. 扩展CRT其实就是爆推式子,然后一路合并,只是最后一个式子上我有点小疑惑,但整体还算好理解. #include<iostream> #include&l ...

  5. BZOJ3129 SDOI2013方程(容斥原理+扩展lucas)

    没有限制的话算一个组合数就好了.对于不小于某个数的限制可以直接减掉,而不大于某个数的限制很容易想到容斥,枚举哪些超过限制即可. 一般情况下n.m.p都是1e9级别的组合数没办法算.不过可以发现模数已经 ...

  6. Codeforces.100633J.Ceizenpok's formula(扩展Lucas)

    题目链接 ->扩展Lucas //求C_n^k%m #include <cstdio> typedef long long LL; LL FP(LL x,LL k,LL p) { L ...

  7. P2467 [SDOI2010]地精部落 (dp+组合数)【扩展Lucas好难不会】

    题目链接:传送门 题目: 题目描述 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其 ...

  8. 【learning】 扩展lucas定理

    首先说下啥是lucas定理: $\binom n m \equiv \binom {n\%P} {m\%P} \times \binom{n/P}{m/P} \pmod P$ 借助这个定理,求$\bi ...

  9. BZOJ4830 [Hnoi2017]抛硬币 【扩展Lucas】

    题目链接 BZOJ4830 题解 当\(a = b\)时,我们把他们投掷硬币的结果表示成二进制,发现,当\(A\)输给\(B\)时,将二进制反转一下\(A\)就赢了\(B\) 还要除去平局的情况,最后 ...

随机推荐

  1. java查询几个菜单下的所有下级菜单

    需求: 假如有几个一级菜单,一级菜单下面有几个二级菜单,二级菜单下又还有三级菜单.现在要求一级菜单里面的几个设置为无效,将不显示在前端.现在需要的是查询出一级菜单下面所有的菜单,包括二级,三级菜单 原 ...

  2. CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学

    CHAPTER 40 Science in Our Digital Age 第40章 我们数字时代的科学 The next time you switch on your computer, you ...

  3. GIT问题(一)——push冲突

  4. Netty源码分析第5章(ByteBuf)---->第1节: AbstractByteBuf

    Netty源码分析第五章: ByteBuf 概述: 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, ...

  5. 如何防范和应对Redis勒索,腾讯云教你出招

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB发表于云+社区专栏 9月10日下午,又一起规模化利用Redis未授权访问漏洞攻击数据库的事件发生,此次 ...

  6. Kubernetes探索学习004--深入Kubernetes的Pod

    深入研究学习Pod 首先需要认识到Pod才是Kubernetes项目中最小的编排单位原子单位,凡是涉及到调度,网络,存储层面的,基本上都是Pod级别的!官方是用这样的语言来描述的: A Pod is ...

  7. OpenCV-Python(1)在Python中使用OpenCV进行人脸检测

    OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前, ...

  8. url的param与dict转换

    urllib.parse.urlencode urlencode from urllib import parse from urllib.request import urlopen from ur ...

  9. 团队博客作业Week5 --- 团队贡献分--分配规则

    团队会议 时间:公元2015年10月26日22时3分20秒 地点:宿舍楼716房间 与会人员:陈谋,李剑锋,卢惠民,刘夕霆,仉伯龙,潘成鼎. 会议内容:今天的组会主要讨论的是项目团队贡献分的计算方式, ...

  10. 迎来OO的曙光,总结规格的意义——OO第四次博客总结

    一切都要结束了,砥砺前行~ 一.测试与正确性论证的效果差异 测试,顾名思义就是我们暴力用大量数据轰炸编写的程序的过程.日常的OO过程中,我们经常互相寻求“测试集”,正是因为测试使用特定数据对我们的功能 ...