铁乐学python_Day42_锁和队列

例:多个线程抢占资源的情况
from threading import Thread
import time def work():
global n
temp = n
time.sleep(0.1)
n = temp - 1 if __name__ == '__main__':
n = 100
l = [] for i in range(100):
p = Thread(target=work)
l.append(p)
p.start() for p in l:
p.join() print(n) # 很有可能n=99 这个时候为了保障数据的安全,我们可以对公共数据使用锁锁起来。
import threading
R=threading.Lock()
R.acquire()
'''
对公共数据的操作
'''
R.release() 例:加锁同步数据
from threading import Thread,Lock
import time def work():
global n
lock.acquire()
temp=n
time.sleep(0.1)
n=temp-1
lock.release() if __name__ == '__main__':
lock=Lock()
n=100
l=[]
for i in range(100):
p=Thread(target=work)
l.append(p)
p.start()
for p in l:
p.join() print(n) #结果肯定为0,由原来的并发执行变成串行,牺牲了执行效率保证了数据安全。 例:互斥锁与join的区别
#不加锁:并发执行,速度快,数据不安全
from threading import current_thread,Thread,Lock
import time
def task():
global n
print('%s is running' %current_thread().getName())
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join() stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:0.5216062068939209 n:99
''' #部分数据加上同步锁:未加锁部分并发执行,加锁部分串行执行,速度慢,数据安全。
from threading import current_thread,Thread,Lock
import time
def task():
#未加锁的代码并发运行
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
#加锁的代码串行运行
lock.acquire()
temp=n
time.sleep(0.5)
n=temp-1
lock.release() if __name__ == '__main__':
n=100
lock=Lock()
threads=[]
start_time=time.time()
for i in range(100):
t=Thread(target=task)
threads.append(t)
t.start()
for t in threads:
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 is running
Thread-2 is running
......
Thread-100 is running
主:53.294203758239746 n:0
''' #加锁会让运行变成串行,而在start之后立即使用join,不用加锁了也是串行的效果。那么为什么使用加锁呢?
#在start之后立刻使用jion,也会将100个任务的执行变成串行,最终n的结果是0,也是安全的,
#但问题是start后立即join:任务内的所有代码都是串行执行的,
#而加锁,只是加锁的部分即修改共享数据的部分是串行的,
#单从保证数据安全方面,二者都可以实现,但很明显是加锁的效率更高. from threading import current_thread,Thread,Lock
import time
def task():
time.sleep(3)
print('%s start to run' %current_thread().getName())
global n
temp=n
time.sleep(0.5)
n=temp-1 if __name__ == '__main__':
n=100
lock=Lock()
start_time=time.time()
for i in range(100):
t=Thread(target=task)
t.start()
t.join()
stop_time=time.time()
print('主:%s n:%s' %(stop_time-start_time,n)) '''
Thread-1 start to run
Thread-2 start to run
......
Thread-100 start to run
主:350.6937336921692 n:0 #耗时是多么的恐怖
'''

死锁与递归锁死锁与递归锁

死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象。

若无外力作用,它们都将无法推进下去。

此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。

如下就是死锁:
from threading import Lock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print("铁乐猫")
mutexA.release()
mutexA.release()

解决方法,递归锁.

在Python中为了支持在同一线程中多次请求同一资源,python提供了递归锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。

直到一个线程所有的acquire都被release,其他的线程才能获得资源。

上面的例子如果使用RLock代替Lock,则不会发生死锁:

from threading import RLock as Lock
import time
mutexA=Lock()
mutexA.acquire()
mutexA.acquire()
print("铁乐猫")
mutexA.release()
mutexA.release() 死锁典型例子:科学家吃面
import time
from threading import Thread,Lock
noodle_lock = Lock()
fork_lock = Lock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release() def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release() for name in ['tiele','mao','铁乐猫']:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start() 递归锁解决科学家吃面中的死锁问题
import time
from threading import Thread,RLock
fork_lock = noodle_lock = RLock()
def eat1(name):
noodle_lock.acquire()
print('%s 抢到了面条'%name)
fork_lock.acquire()
print('%s 抢到了叉子'%name)
print('%s 吃面'%name)
fork_lock.release()
noodle_lock.release() def eat2(name):
fork_lock.acquire()
print('%s 抢到了叉子' % name)
time.sleep(1)
noodle_lock.acquire()
print('%s 抢到了面条' % name)
print('%s 吃面' % name)
noodle_lock.release()
fork_lock.release() for name in ['tiele','mao','铁乐猫]:
t1 = Thread(target=eat1,args=(name,))
t2 = Thread(target=eat2,args=(name,))
t1.start()
t2.start() 定时器(Timer)
定时器,指定n秒后执行某个操作。
例:
from threading import Timer def hello():
print("hello, world") t = Timer(1, hello)
t.start() # after 1 seconds, "hello, world" will be printed

线程队列(queue队列)

queue队列 :使用import queue,用法与进程中使用Queue一样。

队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。

如果maxsize小于1就表示队列长度无限。

调用队列对象的put()方法在队尾插入一个项目。

put()有两个参数,第一个item为必需的,为插入项目的值;

第二个block为可选参数,默认为1。

如果队列当前为空且block为1,put()方法就使调用线程暂停,直到空出一个数据单元。

如果block为0,put方法将引发Full异常。

调用队列对象的get()方法从队头删除并返回一个项目。

可选参数为block,默认为True。

如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。

如果队列为空且block为False,队列将引发Empty异常。

python queue 模块有三种队列:

1)class queue.Queue(maxsize=0) #First In First Out
[FIFO 类似于栈 先进先出]
import queue q=queue.Queue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(先进先出):
first
second
third
''' 2)class queue.LifoQueue(maxsize=0) #Last In Fisrt Out
[LIFO 类似于堆 后进先出] import queue q=queue.LifoQueue()
q.put('first')
q.put('second')
q.put('third') print(q.get())
print(q.get())
print(q.get())
'''
结果(后进先出):
third
second
first
''' class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列
[优先级队列 数字越小(优先级越高)越先取出] import queue q=queue.PriorityQueue()
#put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c')) print(q.get())
print(q.get())
print(q.get())
'''
结果(数字越小优先级越高,优先级高的优先出队):
(10, 'b')
(20, 'a')
(30, 'c')
''' 队列中的其它方法:
Queue.full # 与maxsize大小对应
Queue.qsize() # 返回队列的大小
Queue.empty() # 队列若为空则返回True
Queue.full() # 队列若为满则返回True
Queue.join() # block(阻塞)直到queue被消费完毕,再执行后面的操作 Queue.get([block[, timeout]]) # 获取队列,timeout等待时间
Queue.get_nowait() # 相当Queue.get(False)
Queue.put(item) # 非阻塞 写入队列,timeout等待时间
Queue.put_nowait(item) # 相当Queue.put(item, False)
Queue.task_done() # 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号 例:使用多线程完成队列中的任务 import queue
import threading
import time
import random q = queue.Queue(0) # 当有多个线程共享一个东西的时候就可以用它了
NUM_WORKERS = 3 class MyThread(threading.Thread): def __init__(self, input, worktype):
self._jobq = input
self._work_type = worktype
threading.Thread.__init__(self) def run(self):
while True:
if self._jobq.qsize() > 0:
self._process_job(self._jobq.get(), self._work_type)
else:
break def _process_job(self, job, worktype):
doJob(job, worktype) def doJob(job, worktype):
time.sleep(random.random() * 3)
print("doing", job, " worktype ", worktype) if __name__ == '__main__':
print("begin....")
for i in range(NUM_WORKERS * 2):
q.put(i) # 放入到任务队列中去
print("job qsize:", q.qsize()) for x in range(NUM_WORKERS):
MyThread(q, x).start() 运行效果:
begin....
job qsize: 6
doing 2 worktype 2
doing 0 worktype 0
doing 1 worktype 1
doing 3 worktype 2
doing 5 worktype 1
doing 4 worktype 0

end

参考:http://www.cnblogs.com/Eva-J/articles/8306047.html

铁乐学python_Day42_锁和队列的更多相关文章

  1. 铁乐学python_Day42_线程-信号量事件条件

    铁乐学python_Day42_线程-信号量事件条件 线程中的信号量 同进程的一样,Semaphore管理一个内置的计数器, 每当调用acquire()时内置计数器-1:调用release() 时内置 ...

  2. 铁乐学python_Day42_线程池

    铁乐学python_Day42_线程池 concurrent.futures 异步调用模块 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor: ...

  3. 铁乐学python_Day39_多进程和multiprocess模块2

    铁乐学python_Day39_多进程和multiprocess模块2 锁 -- multiprocess.Lock (进程同步) 之前我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发 ...

  4. 铁乐学python_Day38_多进程和multiprocess模块1

    铁乐学python_Day38_多进程和multiprocess模块1 [进程] 运行中的程序就是一个进程. 所有的进程都是通过它的父进程来创建的. 因此,运行起来的python程序也是一个进程,那么 ...

  5. 铁乐学Python_Day34_Socket模块2和黏包现象

    铁乐学Python_Day34_Socket模块2和黏包现象 套接字 套接字是计算机网络数据结构,它体现了C/S结构中"通信端点"的概念. 在任何类型的通信开始之前,网络应用程序必 ...

  6. 铁乐学python_day01-和python有关的唠嗑

    铁乐学python_day01-和python有关的唠嗑 文:铁乐与猫 2018-03-16 01_python的历史 python的创始人为荷兰人吉多·范罗苏姆(Guido van Rossum). ...

  7. 一个无锁消息队列引发的血案(六)——RingQueue(中) 休眠的艺术 [续]

    目录 (一)起因 (二)混合自旋锁 (三)q3.h 与 RingBuffer (四)RingQueue(上) 自旋锁 (五)RingQueue(中) 休眠的艺术 (六)RingQueue(中) 休眠的 ...

  8. 一个无锁消息队列引发的血案(五)——RingQueue(中) 休眠的艺术

    目录 (一)起因 (二)混合自旋锁 (三)q3.h 与 RingBuffer (四)RingQueue(上) 自旋锁 (五)RingQueue(中) 休眠的艺术 (六)RingQueue(中) 休眠的 ...

  9. 一个无锁消息队列引发的血案(四)——月:RingQueue(上) 自旋锁

    目录 (一)起因 (二)混合自旋锁 (三)q3.h 与 RingBuffer (四)RingQueue(上) 自旋锁 (五)RingQueue(中) 休眠的艺术 (六)RingQueue(中) 休眠的 ...

随机推荐

  1. SC Create 创建一个Windows系统服务 转

        转自:http://www.360doc.com/content/13/0428/09/7555793_281451268.shtml sc create Serv-U binpath= &q ...

  2. golang基础--常量与运算符

    常量与运算符 常量的定义 常量的值在编译时已经确定 常量的定义格式与变量的基本相同 等号的右侧必须是常量或者常量表达式 规范: 常量定义时建议都使用大写,单词之间使用大写 便于包的外部调用 如果只限于 ...

  3. 深入了解Java虚拟机(3)类文件结构

    虚拟机执行子系统 一.类文件结构 1.魔数和class版本 1.magic-魔数:0xCAFEBABE:4字节 2.minor_version:次版本,丶之后的数字:2字节 3.major_versi ...

  4. office中把标题之后的空格去掉

    调整列表缩进--编号之后不特别标注可以把标题之后的空格去掉

  5. Jsp&Servlet入门级项目全程实录第4讲

    惯例广告一发,对于初学真,真的很有用www.java1234.com,去试试吧! 1.添加搜索.添加.修改.删除按钮 <div id="tb"> <div> ...

  6. IIS负载均衡-Application Request Route详解第一篇: ARR介绍

    IIS负载均衡-Application Request Route详解第一篇: ARR介绍 说到负载均衡,相信大家已经不再陌生了,本系列主要介绍在IIS中可以采用的负载均衡的软件:微软的Applica ...

  7. finally 的作用是什么?

    在java中finally首先必须使用在所有catch的最后位置, 无论是否抛出异常,finally代码块总是会被执行.就算是没有catch语句同时又抛出异常的情况下,finally代码块任然会被执行 ...

  8. Centeros7下安装Mysql 2018最新版,非常简单

    下载Mysql的rpm安装包 shell> wget http://dev.mysql.com/get/ mysql-community-release-el7-5.noarch.rpm安装sh ...

  9. myBatis组件之缓存实现及使用

    一 .概述 先讲缓存实现,主要是mybatis一级缓存,二级缓存及缓存使用后续补充 Mybatis缓存的实现是基于Map的,从缓存里面读写数据是缓存模块的核心基础功能:除核心功能之外,有很多额外的附加 ...

  10. @Value失效的问题

    @Value 会在@Controller中失效,失效原因涉及源码问题就不一一叙述了,一般加上@Service,@Component就能解决.如果是在Controller中使用建议新建一个配置类,然后在 ...