二叉堆的实现(数组)——c++
二叉堆的介绍
二叉堆是完全二元树或者是近似完全二元树,按照数据的排列方式可以分为两种:最大堆和最小堆。
最大堆:父结点的键值总是大于或等于任何一个子节点的键值;最小堆:父结点的键值总是小于或等于任何一个子节点的键值。示意图如下:

二叉堆一般都通过"数组"来实现。数组实现的二叉堆,父节点和子节点的位置存在一定的关系。有时候,我们将"二叉堆的第一个元素"放在数组索引0的位置,有时候放在1的位置。当然,它们的本质一样(都是二叉堆),只是实现上稍微有一丁点区别。
假设"第一个元素"在数组中的索引为 0 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i+1);
(02) 索引为i的左孩子的索引是 (2*i+2);
(03) 索引为i的父结点的索引是 floor((i-1)/2);

假设"第一个元素"在数组中的索引为 1 的话,则父节点和子节点的位置关系如下:
(01) 索引为i的左孩子的索引是 (2*i);
(02) 索引为i的左孩子的索引是 (2*i+1);
(03) 索引为i的父结点的索引是 floor(i/2);

注意:本文二叉堆的实现统统都是采用"二叉堆第一个元素在数组索引为0"的方式!
二叉堆的图文解析
图文解析是以"最大堆"来进行介绍的
1. 基本定义
template <class T>
class MaxHeap{
private:
T *mHeap; // 数据
int mCapacity; // 总的容量
int mSize; // 实际容量 private:
// 最大堆的向下调整算法
void filterdown(int start, int end);
// 最大堆的向上调整算法(从start开始向上直到0,调整堆)
void filterup(int start);
public:
MaxHeap();
MaxHeap(int capacity);
~MaxHeap(); // 返回data在二叉堆中的索引
int getIndex(T data);
// 删除最大堆中的data
int remove(T data);
// 将data插入到二叉堆中
int insert(T data);
// 打印二叉堆
void print();
};
MaxHeap是最大堆的对应的类。它包括的核心内容是"添加"和"删除",理解这两个算法,二叉堆也就基本掌握了。下面对它们进行介绍。
2. 添加
假设在最大堆[90,80,70,60,40,30,20,10,50]种添加85,需要执行的步骤如下:

如上图所示,当向最大堆中添加数据时:先将数据加入到最大堆的最后,然后尽可能把这个元素往上挪,直到挪不动为止!
将85添加到[90,80,70,60,40,30,20,10,50]中后,最大堆变成了[90,85,70,60,80,30,20,10,50,40]。
/*
* 最大堆的向上调整算法(从start开始向上直到0,调整堆)
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
*/
template <class T>
void MaxHeap<T>::filterup(int start)
{
int c = start; // 当前节点(current)的位置
int p = (c-)/; // 父(parent)结点的位置
T tmp = mHeap[c]; // 当前节点(current)的大小 while(c > )
{
if(mHeap[p] >= tmp)
break;
else
{
mHeap[c] = mHeap[p];
c = p;
p = (p-)/;
}
}
mHeap[c] = tmp;
} /*
* 将data插入到二叉堆中
*
* 返回值:
* 0,表示成功
* -1,表示失败
*/
template <class T>
int MaxHeap<T>::insert(T data)
{
// 如果"堆"已满,则返回
if(mSize == mCapacity)
return -; mHeap[mSize] = data; // 将"数组"插在表尾
filterup(mSize); // 向上调整堆
mSize++; // 堆的实际容量+1 return ;
}
insert(data)的作用:将数据data添加到最大堆中。当堆已满的时候,添加失败;否则data添加到最大堆的末尾。然后通过上调算法重新调整数组,使之重新成为最大堆。
3. 删除
假设从最大堆[90,85,70,60,80,30,20,10,50,40]中删除90,需要执行的步骤如下:

如上图所示,当从最大堆中删除数据时:先删除该数据,然后用最大堆中最后一个的元素插入这个空位;接着,把这个“空位”尽量往上挪,直到剩余的数据变成一个最大堆。
从[90,85,70,60,80,30,20,10,50,40]删除90之后,最大堆变成了[85,80,70,60,40,30,20,10,50]。
注意:考虑从最大堆[90,85,70,60,80,30,20,10,50,40]中删除60,执行的步骤不能单纯的用它的字节点来替换;而必须考虑到"替换后的树仍然要是最大堆"!

/*
* 最大堆的向下调整算法
*
* 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
*
* 参数说明:
* start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
* end -- 截至范围(一般为数组中最后一个元素的索引)
*/
template <class T>
void MaxHeap<T>::filterdown(int start, int end)
{
int c = start; // 当前(current)节点的位置
int l = *c + ; // 左(left)孩子的位置
T tmp = mHeap[c]; // 当前(current)节点的大小 while(l <= end)
{
// "l"是左孩子,"l+1"是右孩子
if(l < end && mHeap[l] < mHeap[l+])
l++; // 左右两孩子中选择较大者,即mHeap[l+1]
if(tmp >= mHeap[l])
break; //调整结束
else
{
mHeap[c] = mHeap[l];
c = l;
l = *l + ;
}
}
mHeap[c] = tmp;
} /*
* 删除最大堆中的data
*
* 返回值:
* 0,成功
* -1,失败
*/
template <class T>
int MaxHeap<T>::remove(T data)
{
int index;
// 如果"堆"已空,则返回-1
if(mSize == )
return -; // 获取data在数组中的索引
index = getIndex(data);
if (index==-)
return -; mHeap[index] = mHeap[--mSize]; // 用最后元素填补
filterdown(index, mSize-); // 从index位置开始自上向下调整为最大堆 return ;
}
本文来自http://www.cnblogs.com/skywang12345/p/3610382.html
二叉堆的实现(数组)——c++的更多相关文章
- 数据结构图文解析之:二叉堆详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- 二叉堆(binary heap)
堆(heap) 亦被称为:优先队列(priority queue),是计算机科学中一类特殊的数据结构的统称.堆通常是一个可以被看做一棵树的数组对象.在队列中,调度程序反复提取队列中第一个作业并运行,因 ...
- PHP利用二叉堆实现TopK-算法的方法详解
前言 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证 内存和速度的效率,我们可能第一个想法就是利用排序,然后 ...
- 二叉堆 及 大根堆的python实现
Python 二叉堆(binary heap) 二叉堆是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树.二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子 ...
- PHP-利用二叉堆实现TopK-算法
介绍 在以往工作或者面试的时候常会碰到一个问题,如何实现海量TopN,就是在一个非常大的结果集里面快速找到最大的前10或前100个数,同时要保证内存和速度的效率,我们可能第一个想法就是利用排序,然后截 ...
- Binary Heap(二叉堆) - 堆排序
这篇的主题主要是Heapsort(堆排序),下一篇ADT数据结构随笔再谈谈 - 优先队列(堆). 首先,我们先来了解一点与堆相关的东西.堆可以实现优先队列(Priority Queue),看到队列,我 ...
- Java实现的二叉堆以及堆排序详解
一.前言 二叉堆是一个特殊的堆,其本质是一棵完全二叉树,可用数组来存储数据,如果根节点在数组的下标位置为1,那么当前节点n的左子节点为2n,有子节点在数组中的下标位置为2n+1.二叉堆类型分为最大堆( ...
- 二叉堆的应用——查找长度为N数组中第M大数
看到这个题目首先想到是排序,那么时间复杂度自然就是O(NlgN).那么使用二叉堆如何解决呢? 对于下面一个数组,共有12个元素,我们的目标就是找出第5大元素——12 首先建立一个具有M个元素的最小堆, ...
- POJ 2010 - Moo University - Financial Aid 初探数据结构 二叉堆
考虑到数据结构短板严重,从计算几何换换口味= = 二叉堆 简介 堆总保持每个节点小于(大于)父亲节点.这样的堆被称作大根堆(小根堆). 顾名思义,大根堆的数根是堆内的最大元素. 堆的意义在于能快速O( ...
随机推荐
- Judy Array - Example
“ In computer science and software engineering, a Judy array is a data structure that has high perfo ...
- c++ 自动对象
转自: https://www.cnblogs.com/geloutingyu/p/8034904.html 1.自动对象默认情况下,局部变量的生命期局限于所在函数的每次执行期间.只有当定义它的函数被 ...
- array_column()提取二维数组中某个值
<?php $multipleCommodity = array( =>array(), =>array() ); $arr1=array_column($multipleCommo ...
- wdk Windows驱动开发
https://www.cnblogs.com/liaoguifa/p/9049859.html 安装wdk8.1
- 优秀UX设计师的八条黄金法则
与用户保持亲密 成为成功的UX设计师最重要的先决条件之一就是与用户保持紧密的联系,以发现和了解他们的需求和爱好.理想情况下你应该让自己完全地成为产品用户,因为只有这样你才能理解背后的动机.“这样的 ...
- zeromq学习记录(二)天气更新服务器使用ZMQ_SUB ZMQ_PUB
/************************************************************** 技术博客 http://www.cnblogs.com/itdef/ ...
- RNA分析要点
1. 有参与无参转录组分析 2. lncRNA分析 以RNA-Seq测序技术为基础的转录组测序作为高通量测序时代核心技术之一,已在生物科学及医学领域前沿研究中获得广泛应用.RNA-Seq可进行全基因组 ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- SessionCacheTest03.testLoad Unrooted Tests initializationError
这个错误主要是没有加载@Test这个标签,就是把其转化为一个juit测试的类.增加之后就没有问题了,当然还有很多人说是自己的Juit的版本问题,那就改下版本,还有说是没有加载两个类包,为了完整我就把包 ...
- CentOS7查看网络的相关命令
转载自:https://www.linuxidc.com/Linux/2015-07/119555.htm 1.切换到超级用户 [Oscar@localhost 桌面]$ su root 2.查询可用 ...