935. Knight Dialer
A chess knight can move as indicated in the chess diagram below:
.
This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes
N-1hops. Each hop must be from one key to another numbered key.Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing
Ndigits total.How many distinct numbers can you dial in this manner?
Since the answer may be large, output the answer modulo
10^9 + 7.
Example 1:
Input: 1
Output: 10Example 2:
Input: 2
Output: 20Example 3:
Input: 3
Output: 46
Note:
1 <= N <= 5000
Approach #1: DP. [Java]
class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4];
for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
}
return ans;
}
}
Analysis:
We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps
Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.
Init: dp[0][i][j] = 1
Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.
ans = sum(dp[k])
Time complexity: O(kmn) or O(k*12*8) = O(k)
Space complexity: O(kmn) -> O(12 * 8) = O(1)
Approach #2: DP. [C++]
class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
}
return ans;
}
};
define dp[k][i] as of ways to dial and the last key is i after k steps
init: dp[0][0:10] = 1
translation: dp[k][i] = sum(dp[k-1][j]) that j can move to i
ans: sum(dp[k])
Time complexity: O(k*10) = O(k)
Space complexity: O(k*10) -> O(10) = O(1).
Reference:
https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/
935. Knight Dialer的更多相关文章
- [LeetCode] 935. Knight Dialer 骑士拨号器
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- LeetCode 935. Knight Dialer
原题链接在这里:https://leetcode.com/problems/knight-dialer/ 题目: A chess knight can move as indicated in the ...
- 【leetcode】935. Knight Dialer
题目如下: A chess knight can move as indicated in the chess diagram below: . This time, we p ...
- 【LeetCode】935. Knight Dialer 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划TLE 空间换时间,利用对称性 优化空间复杂 ...
- [Swift]LeetCode935. 骑士拨号器 | Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- 109th LeetCode Weekly Contest Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- Android之Dialer之紧急号码
Android之Dialer之紧急号码 e over any other (e.g. supplementary service related) number analysis. a) 112 an ...
随机推荐
- .net core webapi 部署windows server 2008 r2 笔记
WebAPI部署文档 安装dotnet-dev-win-x64.1.0.4 安装DotNetCore.1.1.0-WindowsHosting 安装vc_redist.x64 安装Windows6.1 ...
- 老板说你的UI设计的不高级?你肯定没用这7个技巧...
对于每个网页设计师而言,在设计过程中总会碰到需要作出设计决策的时候.也许你的公司并没有全职设计师,而需求上则要求设计出全新的UI:又或者你正在制作一个你自己的个人项目,而你希望它比 Bootstrap ...
- laravel中的old()函数
1.控制器 2.模板
- laravel-excel文档翻译笔记
1.安装 1>composer 安装 "maatwebsite/excel": "~2.1.0" 2>app/config/ap ...
- 《JavaScript高级程序设计》笔记
1. 当在函数内部定义了其他函数时,就创建了闭包.闭包有权访问包含函数内部的所有变量. 2. 闭包可以分隔变量空间,不会占用全局空间而造成相互间的干拢.使用闭包可以在JavaScript中模仿块级作用 ...
- system v消息队列demo(未编译)
#include <stdio.h> #include <string.h> #include <stdlib.h> #include <errno.h> ...
- 2018.08.21 NOIP模拟 unlock(模拟+找规律)
unlock 描述 经济危机席卷全球,L国也收到冲击,大量人员失业. 然而,作为L国的风云人物,X找到了自己的新工作.从下周开始,X将成为一个酒店的助理锁匠,当然,他得先向部门领导展示他的开锁能力. ...
- 顺序表[A+B->C]
/*----代码段@映雪------*/ /*采用顺序表存储,改成数组也行*/ int MergeList(SeqList &A,SeqList &B,SeqList &C) ...
- Swift要点:从Objective-C开发者的角度看Swift
代码环境是Xcode6.3-Beta3. Swift已经极大的改变了开发iOS应用的方式.本文中,我会列出Swift的几个重点,并且和Objective-C一一做出对比. 注意,本文不是Swift的入 ...
- VS 附加不上w3wp.exe
今天调用VS 附加不上w3wp.exe,其他的站点都能附加上,就有一个站附加不上,找了各种可能都没有解决,结果发现是版本被编译成release了,原来的配置都是debug的,不知道被谁给改成relea ...
. 