935. Knight Dialer
A chess knight can move as indicated in the chess diagram below:
.
This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes
N-1hops. Each hop must be from one key to another numbered key.Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing
Ndigits total.How many distinct numbers can you dial in this manner?
Since the answer may be large, output the answer modulo
10^9 + 7.
Example 1:
Input: 1
Output: 10Example 2:
Input: 2
Output: 20Example 3:
Input: 3
Output: 46
Note:
1 <= N <= 5000
Approach #1: DP. [Java]
class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4];
for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
}
return ans;
}
}
Analysis:
We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps
Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.
Init: dp[0][i][j] = 1
Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.
ans = sum(dp[k])
Time complexity: O(kmn) or O(k*12*8) = O(k)
Space complexity: O(kmn) -> O(12 * 8) = O(1)
Approach #2: DP. [C++]
class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
}
return ans;
}
};
define dp[k][i] as of ways to dial and the last key is i after k steps
init: dp[0][0:10] = 1
translation: dp[k][i] = sum(dp[k-1][j]) that j can move to i
ans: sum(dp[k])
Time complexity: O(k*10) = O(k)
Space complexity: O(k*10) -> O(10) = O(1).
Reference:
https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/
935. Knight Dialer的更多相关文章
- [LeetCode] 935. Knight Dialer 骑士拨号器
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- LeetCode 935. Knight Dialer
原题链接在这里:https://leetcode.com/problems/knight-dialer/ 题目: A chess knight can move as indicated in the ...
- 【leetcode】935. Knight Dialer
题目如下: A chess knight can move as indicated in the chess diagram below: . This time, we p ...
- 【LeetCode】935. Knight Dialer 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划TLE 空间换时间,利用对称性 优化空间复杂 ...
- [Swift]LeetCode935. 骑士拨号器 | Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- 109th LeetCode Weekly Contest Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- Android之Dialer之紧急号码
Android之Dialer之紧急号码 e over any other (e.g. supplementary service related) number analysis. a) 112 an ...
随机推荐
- Spring框架中Bean管理的常用注解
1. @Component:组件.(作用在类上)可以作用在任何一个类上 2. Spring中提供@Component的三个衍生注解:(功能目前来讲是一致的) * @Controller -- 作用在W ...
- css hover使用条件
1:必须是其子元素才可以使用: 举例: css: 正确:.group-goodsList ul li:hover .msct{background-color: #ff4000;color: #FFF ...
- 结构体的sort【防止遗忘w】
#include<iostream> #include<algorithm> using namespace std; int n; struct jie { int num; ...
- 645. Set Mismatch
static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...
- 实体类在set字段时报空指针异常
实体类在set字段时报空指针异常的原因: T_Entry entry=null;entry.setGeneName("1212");entry.setEntryName(" ...
- 2018.07.31 POJ1741Tree(点分治)
传送门 只是来贴一个点分治的板子(年轻时候写的丑别介意). 代码: #include<cstdio> #include<cstring> #include<algorit ...
- yii2 控制器的生命周期
控制器生命周期 http://www.yii-china.com/doc/guide/structure_controllers.html 处理一个请求时,应用主体 会根据请求路由创建一个控制器,控制 ...
- hdu-1130(卡特兰数+大数乘法,除法模板)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1130 卡特兰数:https://blog.csdn.net/qq_33266889/article/d ...
- Linux抓包
默认系统里边没有安装有tcpdump的,无法直接使用 这里我们可以使用yum来直接安装它 yum install -y tcpdump 如果忘记了这个软件的用法,我们可以使用 tcpdump ...
- modelsim仿真中Altera库的用法
添加altera 库 实例: 把建立lpm_mux IP时生成的.v文件lpm_mux_ip.v和编写的测试脚本文件放在一起,在modelsim中建立工程,把下面两个文件添加到工程中 直接compil ...
. 