A chess knight can move as indicated in the chess diagram below:

 .           

This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes N-1 hops.  Each hop must be from one key to another numbered key.

Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing N digits total.

How many distinct numbers can you dial in this manner?

Since the answer may be large, output the answer modulo 10^9 + 7.

Example 1:

Input: 1
Output: 10

Example 2:

Input: 2
Output: 20

Example 3:

Input: 3
Output: 46

Note:

  • 1 <= N <= 5000

Approach #1: DP. [Java]

class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4]; for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}}; for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
} int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
} return ans;
}
}

Analysis:

We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps

Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.

Init: dp[0][i][j] = 1

Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.

ans = sum(dp[k])

Time complexity: O(kmn) or O(k*12*8) = O(k)

Space complexity: O(kmn) -> O(12 * 8) = O(1)

  

Approach #2: DP. [C++]

class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
} int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
} return ans;
}
};

  

define dp[k][i] as of ways to dial and the last key is i after k steps

init: dp[0][0:10] = 1

translation: dp[k][i] = sum(dp[k-1][j]) that j  can move to i

ans: sum(dp[k])

Time complexity: O(k*10) = O(k)

Space complexity: O(k*10) -> O(10) = O(1).

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/

935. Knight Dialer的更多相关文章

  1. [LeetCode] 935. Knight Dialer 骑士拨号器

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  2. LeetCode 935. Knight Dialer

    原题链接在这里:https://leetcode.com/problems/knight-dialer/ 题目: A chess knight can move as indicated in the ...

  3. 【leetcode】935. Knight Dialer

    题目如下: A chess knight can move as indicated in the chess diagram below:  .            This time, we p ...

  4. 【LeetCode】935. Knight Dialer 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划TLE 空间换时间,利用对称性 优化空间复杂 ...

  5. [Swift]LeetCode935. 骑士拨号器 | Knight Dialer

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  6. 109th LeetCode Weekly Contest Knight Dialer

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  7. leetcode动态规划题目总结

    Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...

  8. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  9. Android之Dialer之紧急号码

    Android之Dialer之紧急号码 e over any other (e.g. supplementary service related) number analysis. a) 112 an ...

随机推荐

  1. Spring框架中Bean管理的常用注解

    1. @Component:组件.(作用在类上)可以作用在任何一个类上 2. Spring中提供@Component的三个衍生注解:(功能目前来讲是一致的) * @Controller -- 作用在W ...

  2. css hover使用条件

    1:必须是其子元素才可以使用: 举例: css: 正确:.group-goodsList ul li:hover .msct{background-color: #ff4000;color: #FFF ...

  3. 结构体的sort【防止遗忘w】

    #include<iostream> #include<algorithm> using namespace std; int n; struct jie { int num; ...

  4. 645. Set Mismatch

    static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...

  5. 实体类在set字段时报空指针异常

    实体类在set字段时报空指针异常的原因: T_Entry entry=null;entry.setGeneName("1212");entry.setEntryName(" ...

  6. 2018.07.31 POJ1741Tree(点分治)

    传送门 只是来贴一个点分治的板子(年轻时候写的丑别介意). 代码: #include<cstdio> #include<cstring> #include<algorit ...

  7. yii2 控制器的生命周期

    控制器生命周期 http://www.yii-china.com/doc/guide/structure_controllers.html 处理一个请求时,应用主体 会根据请求路由创建一个控制器,控制 ...

  8. hdu-1130(卡特兰数+大数乘法,除法模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1130 卡特兰数:https://blog.csdn.net/qq_33266889/article/d ...

  9. Linux抓包

    默认系统里边没有安装有tcpdump的,无法直接使用   这里我们可以使用yum来直接安装它 yum install -y tcpdump   如果忘记了这个软件的用法,我们可以使用 tcpdump ...

  10. modelsim仿真中Altera库的用法

    添加altera 库 实例: 把建立lpm_mux IP时生成的.v文件lpm_mux_ip.v和编写的测试脚本文件放在一起,在modelsim中建立工程,把下面两个文件添加到工程中 直接compil ...