935. Knight Dialer
A chess knight can move as indicated in the chess diagram below:
.
This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes
N-1hops. Each hop must be from one key to another numbered key.Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing
Ndigits total.How many distinct numbers can you dial in this manner?
Since the answer may be large, output the answer modulo
10^9 + 7.
Example 1:
Input: 1
Output: 10Example 2:
Input: 2
Output: 20Example 3:
Input: 3
Output: 46
Note:
1 <= N <= 5000
Approach #1: DP. [Java]
class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4];
for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
}
return ans;
}
}
Analysis:
We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps
Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.
Init: dp[0][i][j] = 1
Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.
ans = sum(dp[k])
Time complexity: O(kmn) or O(k*12*8) = O(k)
Space complexity: O(kmn) -> O(12 * 8) = O(1)
Approach #2: DP. [C++]
class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
}
int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
}
return ans;
}
};
define dp[k][i] as of ways to dial and the last key is i after k steps
init: dp[0][0:10] = 1
translation: dp[k][i] = sum(dp[k-1][j]) that j can move to i
ans: sum(dp[k])
Time complexity: O(k*10) = O(k)
Space complexity: O(k*10) -> O(10) = O(1).
Reference:
https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/
935. Knight Dialer的更多相关文章
- [LeetCode] 935. Knight Dialer 骑士拨号器
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- LeetCode 935. Knight Dialer
原题链接在这里:https://leetcode.com/problems/knight-dialer/ 题目: A chess knight can move as indicated in the ...
- 【leetcode】935. Knight Dialer
题目如下: A chess knight can move as indicated in the chess diagram below: . This time, we p ...
- 【LeetCode】935. Knight Dialer 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划TLE 空间换时间,利用对称性 优化空间复杂 ...
- [Swift]LeetCode935. 骑士拨号器 | Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- 109th LeetCode Weekly Contest Knight Dialer
A chess knight can move as indicated in the chess diagram below: . This time, we place o ...
- leetcode动态规划题目总结
Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- Android之Dialer之紧急号码
Android之Dialer之紧急号码 e over any other (e.g. supplementary service related) number analysis. a) 112 an ...
随机推荐
- MySql中循环的使用
一.while循环 语法:WHILE [条件] DO [逻辑] END WHILE; delimiter $$ DROP FUNCTION IF EXISTS `fn_findCharCount` $ ...
- vue2.0 MintUI安装和基本使用
http://mint-ui.github.io/docs/#/en2 Mintui 详细地址 基于2.0的安装 npm install mint-ui -S 主要就三行指令 import Mint ...
- php初中高阶段
多学习PHP的朋友比较关心的问题之一就是学成后就业的薪资问题,关于PHP就业工资我们共同来探讨一下,其实小编觉得,PHP就业工资是多少并不重要,总要的是你的技术值多少钱,只要你的技术很棒,高薪根本就不 ...
- linux 动态库 静态库 函数覆盖
本文讨论了linux动态库 静态库中函数的覆盖问题. 测试目的: 同名函数,分别打成动态库libdync_lib.so与静态库libstatic_lib.a,并把libstatic_lib.a打到另 ...
- svn一次性add/delete所有文件
Linux命令行下,svn add 一次性批量上传 命令行下操作svn没有使用界面形式的TortoiseSVN直观,但是不管怎样,命令行下操作svn还是有它的有点,如果你碰到一次需要svn add许多 ...
- Autotest Weekly Report
Autotest Weekly Report Reported by: 12/16/2013 What I Did Last Week Debug autotest scripts of ‘smart ...
- 旅游类APP原型模板分享——爱彼迎
这是一款专为游客提供全球范围内短租服务的APP,可以让你不论出门在外或在家附近都能开展探索之旅,并且还可以获取世界各地独特房源.当地体验及好去处等相关信息. 这款APP层级清晰简明,此原型模板所用到的 ...
- Check time of different search methods
https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...
- Jigloo 下载 安装 GUI
这个需要授权,一直不能解决!! 网上找了很多,都觉不能访问,这个可以用Eclipse直接更新的 http://www.cloudgardensoftware.com/jigloo/update-sit ...
- org.hibernate.HibernateException: /hibernate.cfg.xml not found等三个问题
初次配置hibernate在myeclipse上: 出现三个问题,怎么都不好使,比对代码,没有问题,查看路径还是没有问题: 1.org.hibernate.HibernateException: /h ...
. 