A chess knight can move as indicated in the chess diagram below:

 .           

This time, we place our chess knight on any numbered key of a phone pad (indicated above), and the knight makes N-1 hops.  Each hop must be from one key to another numbered key.

Each time it lands on a key (including the initial placement of the knight), it presses the number of that key, pressing N digits total.

How many distinct numbers can you dial in this manner?

Since the answer may be large, output the answer modulo 10^9 + 7.

Example 1:

Input: 1
Output: 10

Example 2:

Input: 2
Output: 20

Example 3:

Input: 3
Output: 46

Note:

  • 1 <= N <= 5000

Approach #1: DP. [Java]

class Solution {
public int knightDialer(int N) {
int mod = 1000000007;
int[][][] dp = new int[N+1][5][4]; for (int j = 0; j < 4; ++j)
for (int k = 0; k < 3; ++k)
dp[1][j][k] = 1;
dp[1][3][0] = dp[1][3][2] = 0;
int[][] dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}}; for (int k = 2; k <= N; ++k) {
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int d = 0; d < 8; ++d) {
int x_ = i + dirs[d][0];
int y_ = j + dirs[d][1];
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
dp[k][i][j] = (dp[k][i][j] + dp[k-1][x_][y_]) % mod;
}
}
}
} int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[N][i][j]) % mod;
// System.out.print(dp[N][i][j] + " ");
}
// System.out.println("ans = " + ans);
} return ans;
}
}

Analysis:

We can define dp[k][i][j] as of ways to dial and the last key is (i, j) after k steps

Note: dp[*][3][0], dp[*][3][2] are always zero for all the steps.

Init: dp[0][i][j] = 1

Transition: dp[k][i][j] = sum(dp[k-1][i+dy][j+dx]) 8 ways of move from last step.

ans = sum(dp[k])

Time complexity: O(kmn) or O(k*12*8) = O(k)

Space complexity: O(kmn) -> O(12 * 8) = O(1)

  

Approach #2: DP. [C++]

class Solution {
public:
int knightDialer(int N) {
vector<vector<int>> dp(4, vector<int>(3, 1));
dp[3][0] = dp[3][2] = 0;
int mod = pow(10, 9) + 7;
vector<pair<int, int>> dirs = {{1, 2}, {1, -2}, {2, 1}, {2, -1},
{-1, 2}, {-1, -2}, {-2, 1}, {-2, -1}};
for (int k = 2; k <= N; ++k) {
vector<vector<int>> temp(4, vector<int>(3, 0));
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
if (i == 3 && j != 1) continue;
for (int k = 0; k < 8; ++k) {
int x_ = i + dirs[k].first;
int y_ = j + dirs[k].second;
if (x_ < 0 || y_ < 0 || x_ >= 4 || y_ >= 3) continue;
temp[i][j] = (temp[i][j] + dp[x_][y_]) % mod;
}
}
}
dp.swap(temp);
} int ans = 0;
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 3; ++j) {
ans = (ans + dp[i][j]) % mod;
}
} return ans;
}
};

  

define dp[k][i] as of ways to dial and the last key is i after k steps

init: dp[0][0:10] = 1

translation: dp[k][i] = sum(dp[k-1][j]) that j  can move to i

ans: sum(dp[k])

Time complexity: O(k*10) = O(k)

Space complexity: O(k*10) -> O(10) = O(1).

Reference:

https://zxi.mytechroad.com/blog/dynamic-programming/leetcode-935-knight-dialer/

935. Knight Dialer的更多相关文章

  1. [LeetCode] 935. Knight Dialer 骑士拨号器

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  2. LeetCode 935. Knight Dialer

    原题链接在这里:https://leetcode.com/problems/knight-dialer/ 题目: A chess knight can move as indicated in the ...

  3. 【leetcode】935. Knight Dialer

    题目如下: A chess knight can move as indicated in the chess diagram below:  .            This time, we p ...

  4. 【LeetCode】935. Knight Dialer 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划TLE 空间换时间,利用对称性 优化空间复杂 ...

  5. [Swift]LeetCode935. 骑士拨号器 | Knight Dialer

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  6. 109th LeetCode Weekly Contest Knight Dialer

    A chess knight can move as indicated in the chess diagram below:  .            This time, we place o ...

  7. leetcode动态规划题目总结

    Hello everyone, I am a Chinese noob programmer. I have practiced questions on leetcode.com for 2 yea ...

  8. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  9. Android之Dialer之紧急号码

    Android之Dialer之紧急号码 e over any other (e.g. supplementary service related) number analysis. a) 112 an ...

随机推荐

  1. MySql中循环的使用

    一.while循环 语法:WHILE [条件] DO [逻辑] END WHILE; delimiter $$ DROP FUNCTION IF EXISTS `fn_findCharCount` $ ...

  2. vue2.0 MintUI安装和基本使用

    http://mint-ui.github.io/docs/#/en2 Mintui 详细地址 基于2.0的安装 npm install mint-ui -S 主要就三行指令 import Mint ...

  3. php初中高阶段

    多学习PHP的朋友比较关心的问题之一就是学成后就业的薪资问题,关于PHP就业工资我们共同来探讨一下,其实小编觉得,PHP就业工资是多少并不重要,总要的是你的技术值多少钱,只要你的技术很棒,高薪根本就不 ...

  4. linux 动态库 静态库 函数覆盖

    本文讨论了linux动态库  静态库中函数的覆盖问题. 测试目的: 同名函数,分别打成动态库libdync_lib.so与静态库libstatic_lib.a,并把libstatic_lib.a打到另 ...

  5. svn一次性add/delete所有文件

    Linux命令行下,svn add 一次性批量上传 命令行下操作svn没有使用界面形式的TortoiseSVN直观,但是不管怎样,命令行下操作svn还是有它的有点,如果你碰到一次需要svn add许多 ...

  6. Autotest Weekly Report

    Autotest Weekly Report Reported by: 12/16/2013 What I Did Last Week Debug autotest scripts of ‘smart ...

  7. 旅游类APP原型模板分享——爱彼迎

    这是一款专为游客提供全球范围内短租服务的APP,可以让你不论出门在外或在家附近都能开展探索之旅,并且还可以获取世界各地独特房源.当地体验及好去处等相关信息. 这款APP层级清晰简明,此原型模板所用到的 ...

  8. Check time of different search methods

    https://github.com/Premiumlab/Python-for-Algorithms--Data-Structures--and-Interviews/blob/master/Moc ...

  9. Jigloo 下载 安装 GUI

    这个需要授权,一直不能解决!! 网上找了很多,都觉不能访问,这个可以用Eclipse直接更新的 http://www.cloudgardensoftware.com/jigloo/update-sit ...

  10. org.hibernate.HibernateException: /hibernate.cfg.xml not found等三个问题

    初次配置hibernate在myeclipse上: 出现三个问题,怎么都不好使,比对代码,没有问题,查看路径还是没有问题: 1.org.hibernate.HibernateException: /h ...