题目链接

\(Description\)

  有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数。

\(Solution\)

  为简化问题,将无序转为有序,只需在最后除以\(m!\)即可。

  设\(f[i]\)表示构造前\(i\)个集合并满足条件的方案数。

  每个数出现次数为偶数,所以如果前\(i-1\)个集合确定,第\(i\)个集合也可以确定。这样对于\(i\)有\(A_{2^n-1}^{i-1}\)种方案,即从所有非空集合中确定\(i-1\)个集合。

  但是会有非法情况,比如这样得到的第\(i\)个集合为空,那么说明前\(i-1\)个集合已经满足条件,这样的方案数是\(f[i-1]\),减掉。

  也有可能得到的第\(i\)个集合与之前某个集合\(j\)重复,那么去掉\(i,j\)后得到的会是合法方案,即\(f[i-2]\),而第\(i/j\)个集合的选取有\(2^n-1-(i-2)\)种可能,\(j\)集合的位置有\(i-1\)种可能,所以减去\(f[i-2]*(i-1)*[2^n-1-(i-2)]\)。

  这样所有限制都处理完了。

  递推式:\(f[i]=A_{2^n-1}^{i-1}-f[i-1]-f[i-2]*(i-1)*[2^n-1-(i-2)]\)

  为什么不能用组合做而要化成排列呢。。

  我觉得是后面枚举的集合情况与前面不一定无序吧。。

  求解答。。

//4728kb	404ms
#include <cstdio>
#include <algorithm>
#define P (100000007)
#define Mul(a,b) (1ll*(a)*(b)%P)
#define Sub(a,b) (a<b ? (a)-(b)+P : (a)-(b))//()!
const int N=1e6+5; int n,m,f[N]; inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1, x=Mul(x,x))
if(k&1) t=Mul(t,x);
return t;
} int main()
{
scanf("%d%d",&n,&m);
int pw2=FP(2,n)-1;//if(!pw2) pw2=P-1; else --pw2; f[0]=1, f[1]=0;
for(int i=2,Alas=pw2; i<=m; ++i)
{
f[i]=(Alas-f[i-1]+P-1ll*f[i-2]*(i-1)%P*Sub(pw2,i-2)%P+P)%P;
Alas=Mul(Alas, Sub(pw2+1,i));//别去用数组存A[]了。。
}
int inv=1;
for(int i=2; i<=m; ++i) inv=Mul(inv,i);
inv=FP(inv,P-2);
printf("%lld",Mul(f[m],inv)); return 0;
}

BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)的更多相关文章

  1. bzoj 2339: [HNOI2011]卡农

    Description Solution 比较难想.... 我们先考虑去掉无序的这个条件,改为有序,最后除 \(m!\) 即可 设 \(f[i]\) 表示前\(i\)个合法集合的方案数 明确一点: 如 ...

  2. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  3. 2339: [HNOI2011]卡农

    Description 首先去除顺序不同算一种的麻烦,就是最后答案除以总片段数\(2^m-1\) 设\(f_i\)表示安排\(i\)个片段的合法种类 那么对于任何一个包含\(i-1\)个片段的序列(除 ...

  4. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  5. bzoj2339[HNOI2011]卡农 dp+容斥

    2339: [HNOI2011]卡农 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 842  Solved: 510[Submit][Status][ ...

  6. [HNOI2011]卡农 (数论计数,DP)

    题面 原题面 众所周知卡农是一种复调音乐的写作技法,小余在听卡农音乐时灵感大发,发明了一种新的音乐谱写规则. 他将声音分成 n n n 个音阶,并将音乐分成若干个片段.音乐的每个片段都是由 1 1 1 ...

  7. P3214 [HNOI2011]卡农

    题目 P3214 [HNOI2011]卡农 在被一题容斥\(dp\)完虐之后,打算做一做集合容斥这类的题了 第一次深感HNOI的毒瘤(题做得太少了!!) 做法 求\([1,n]\)组成的集合中选\(m ...

  8. 【BZOJ2339】[HNOI2011]卡农 组合数+容斥

    [BZOJ2339][HNOI2011]卡农 题解:虽然集合具有无序性,但是为了方便,我们先考虑有序的情况,最后将答案除以m!即可. 考虑DP.如果我们已经知道了前m-1个集合,那么第m个集合已经是确 ...

  9. [BZOJ2339][HNOI2011]卡农

    [BZOJ2339][HNOI2011]卡农 试题描述 输入 见"试题描述" 输出 见"试题描述" 输入示例 见"试题描述" 输出示例 见& ...

随机推荐

  1. UNIX环境高级编程 第1章 UNIX基础知识

    所有操作系统都为运行在它之上的程序提供各种服务,典型的服务包括:执行新程序.打开文件.读写文件.分配存储空间.提供时间等. UNIX体系结构 严格来说,操作系统是一种软件,它控制计算机硬件资源,提供程 ...

  2. 2016.6.24——vector<vector<int>>【Binary Tree Level Order Traversal】

    Binary Tree Level Order Traversal 本题收获: 1.vector<vector<int>>的用法 vector<vector<int ...

  3. 64_t8

    trytond-account-de-skr03-4.0.0-3.fc26.noarch.rpm 12-Feb-2017 13:06 53278 trytond-account-invoice-4.0 ...

  4. bash脚本里su命令执行

    俩种方法 1.可以使用 <<EOF 参数实现. 脚本内容:cat test.sh代码如下: #!/bin/bashsu - test <<EOFpwd;exit;EOF 2.当 ...

  5. java浅复制与深使用接口实现

    1.浅复制与深复制概念⑴浅复制(浅克隆)被复制对象的所有变量都含有与原来的对象相同的值,而所有的对其他对象的引用仍然指向原来的对象.换言之,浅复制仅仅复制所考虑的对象,而不复制它所引用的对象. ⑵深复 ...

  6. mysql高可用架构 -> MHA环境准备-02

    环境准备 环境检查(三个测试节点的环境都应该是一样的,只有ip不同) [root@db01 bin]# cat /etc/redhat-release //系统版本 CentOS Linux rele ...

  7. P2471 [SCOI2007]降雨量

    Description 我们常常会说这样的话:"X年是自Y年以来降雨量最多的".它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小于X年.例如2 ...

  8. CSS3实现文字折纸效果

    CSS3实现文字折纸效果 效果图: 代码如下,复制即可使用: <!DOCTYPE html> <html> <head> <title></tit ...

  9. HttpRunner接口自动化测试框架

    简介 2018年python开发者大会上,了解到HttpRuuner开源自动化测试框架,采用YAML/JSON格式管理用例,能录制和转换生成用例功能,充分做到用例与测试代码分离,相比excel维护测试 ...

  10. 数据库中INFORMATION_SCHEMA的说明及使用

    第一个查询看看库里有多少个表,表名等select * from INFORMATION_SCHEMA.TABLES information_schema这张数据表保存了MySQL服务器所有数据库的信息 ...