P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚

你有一段区间需要被覆盖(长度 <= 86,399)

现有 \(n \leq 10000\) 段小线段, 每段可以从 \(l_{i}\) 到 \(r_{i}\) 花费为 \(s_{i}\)

求覆盖整个区间的最小花费


错误日志: 初始化时应该是 \(dp[L - 1]\) 为 \(0\) 而不是 \(dp[1]\) 为 \(0\) , 因为只需要覆盖 \([L, R]\)


Solution

设 \(dp[n]\) 表示从起点覆盖到 \(n\) 的最小花费

我们将小线段按照右端点升序排序, 满足无后效性

对于第 \(i\) 个线段, 有状态转移方程:$$dp[r_{i}] = min(dp[r_{i}], \min_{l_[i] - 1 \leq k < r_{i}}dp[k] + s_{i})$$

其含义为: 从第 \(i\) 段线段的起点开始选择上一个终点的最小值, 这样可以使线段相交(来保证无空白), 更新此线段能覆盖的终点

然后发现我们需要区间查询最小值和单点修改

为啥是单点修改不是区间修改呢? 当两个线段相交, 一定有 \(l_{x} \leq r_{y}\)

所以只需要在线段终点处单点修改即可

初始化 \(dp[L - 1]\) 为零

因为需要线段树维护, 尽量把起点设为 \(1\) 防止各种奇怪的错误, 本题所有位置点坐标 $ + 2$

还要注意处理一下超出 \([L, R]\) 的线段

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
#define LL long long
#define REP(i, x, y) for(int i = (x);i <= (y);i++)
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int minn = 166419, INF = 1e9;
int num, L, R;
struct Node{
int l, r, s;
}I[minn];
bool cmp(Node a, Node b){return a.r < b.r;}
#define lid (id << 1)
#define rid (id << 1) | 1
int dp[minn];
struct seg_tree{
int l, r;
int min;
}tree[minn << 2];
void pushup(int id){tree[id].min = min(tree[lid].min, tree[rid].min);}
void build(int id, int l, int r){
tree[id].l = l, tree[id].r = r;
if(l == r){
tree[id].min = dp[l];
return ;
}
int mid = (l + r) >> 1;
build(lid, l, mid), build(rid, mid + 1, r);
pushup(id);
}
void update(int id, int val, int l, int r){
if(tree[id].l == l && tree[id].r == r){
tree[id].min = val;
return ;
}
int mid = (tree[id].l + tree[id].r) >> 1;
if(mid < l)update(rid, val, l, r);
else update(lid, val, l, r);
pushup(id);
}
int query(int id, int l, int r){
if(tree[id].l == l && tree[id].r == r)return tree[id].min;
int mid = (tree[id].l + tree[id].r) >> 1;
if(mid < l)return query(rid, l, r);
else if(mid >= r)return query(lid, l, r);
else return min(query(lid, l, mid), query(rid, mid + 1, r));
}
int main(){
num = RD(), L = RD() + 2, R = RD() + 2;//保证线段树左端点是1
REP(i, 1, R)dp[i] = INF;
dp[L - 1] = 0;
build(1, 1, R);
REP(i, 1, num){
I[i].l = RD() + 2;
I[i].r = RD() + 2;
I[i].s = RD();
I[i].l = I[i].l < L ? L : I[i].l;//处理一下超出范围的
I[i].r = I[i].r > R ? R : I[i].r;
}
sort(I + 1, I + 1 + num, cmp);
REP(i, 1, num){
int minn = query(1, I[i].l - 1, I[i].r);
//printf("minn=%d\n", minn);
dp[I[i].r] = min(dp[I[i].r], minn + I[i].s);
update(1, dp[I[i].r], I[i].r, I[i].r);
}
//REP(i, L - 1, R)printf("dp[%d]=%d\n", i - 2, dp[i]);
if(dp[R] == INF){puts("-1");return 0;}
printf("%d\n", dp[R]);
return 0;
}

P4644 [Usaco2005 Dec]Cleaning Shifts 清理牛棚的更多相关文章

  1. 洛谷P4644 [USACO2005 Dec]Cleaning Shifts 清理牛棚 [DP,数据结构优化]

    题目传送门 清理牛棚 题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness ...

  2. BZOJ1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚

    1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 414  Solved: ...

  3. BZOJ 1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚

    题目 1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚 Time Limit: 5 Sec  Memory Limit: 64 MB Description Farm ...

  4. BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树

    BZOJ_1672_[Usaco2005 Dec]Cleaning Shifts 清理牛棚_动态规划+线段树 题意:  约翰的奶牛们从小娇生惯养,她们无法容忍牛棚里的任何脏东西.约翰发现,如果要使这群 ...

  5. [Usaco2005 Dec]Cleaning Shifts 清理牛棚 (DP优化/线段树)

    [Usaco2005 Dec] Cleaning Shifts 清理牛棚 题目描述 Farmer John's cows, pampered since birth, have reached new ...

  6. 【BZOJ1672】[Usaco2005 Dec]Cleaning Shifts 清理牛棚 动态规划

    [BZOJ1672][Usaco2005 Dec]Cleaning Shifts Description Farmer John's cows, pampered since birth, have ...

  7. 【bzoj1672】[USACO2005 Dec]Cleaning Shifts 清理牛棚

    题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...

  8. 【BZOJ】1672: [Usaco2005 Dec]Cleaning Shifts 清理牛棚(dp/线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1672 dp很好想,但是是n^2的..但是可以水过..(5s啊..) 按左端点排序后 f[i]表示取第 ...

  9. 【bzoj1672】[USACO2005 Dec]Cleaning Shifts 清理牛棚 dp/线段树

    题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...

随机推荐

  1. 实验一linux 系统简介和实验二基本概念及操作

    作业 zy e

  2. 配置树莓派/Linux默认声卡设备

    1.设置默认声卡为USB声卡 在$HOME下新建.asoundrc $cd $HOME $nano .asoundrc 输入以下内容 defaults.ctl.card 1 defaults.pcm. ...

  3. Software Defined Networking(Week 2, part 1)

    History of SDN 1.1 - 1.2 本节讨论从上世纪八十年代时到现在为止出现的SDN的思想和发展历史.了解历史,可以明白技术后面的成因以及一些原则,并从架构上去大致掌握.了解一些主旨. ...

  4. windows下的C++ socket服务器(4)

    void handleAccept(int socket_fd) { ] = { '\0' }; string cmd; string filename; recv(socket_fd, buf, ) ...

  5. Java中的设计模式之单例模式

    Java中的单例模式 设计模式是软件开发过程中经验的积累 一.单例模式 1.单例模式是一种常用的软件设计模式,通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控 ...

  6. Spring框架的补充

    1.使用xml文件方式配置bean ——property标签ref属性和ref标签区别 <property name=“bean” ref="myBbean" /> r ...

  7. Python入门:数据结构的3个小技巧

    这是关于Python的第11篇文章,主要介绍下数据结构的3个小技巧. 排序: 使用sorted函数实现排序. sorted函数按照长短.大小.英文字母的顺序给每个列表的元素进行排序.这个函数经常在数据 ...

  8. LR_问题_虚拟用户以进程和线程模式运行的区别

    进程方式和线程方式的优缺点: 如果选择按照进程方式运行, 每个用户都将启动一个mmdrv进程,多个mmdrv进程会占用大量内存及其他系统资源,这就限制了可以在任一负载生成器上运行的并发用户数的数量,因 ...

  9. 获取php版本

    phpversion()函数可以获取版本 version_compare可以比较两个版本 mixed version_compare ( string $version1 , string $vers ...

  10. python杂谈:Python中\r的用法示例

    \r 默认表示将输出的内容返回到第一个指针,这样的话,后面的内容会覆盖前面的内容 import sys import time def view_bar(num,total): rate = floa ...