下面是Hadoop中CapacitySchedule配置,包含了新建队列和子队列

   <configuration>

     <property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.2</value>
</property> <property>
<name>yarn.scheduler.capacity.maximum-applications</name>
<value>10000</value>
</property> <property>
<name>yarn.scheduler.capacity.node-locality-delay</name>
<value>40</value>
</property> <property>
<name>yarn.scheduler.capacity.queue-mappings-override.enable</name>
<value>false</value>
</property> <property>
<name>yarn.scheduler.capacity.resource-calculator</name>
<value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value>
</property> <property>
<name>yarn.scheduler.capacity.root.accessible-node-labels</name>
<value>*</value>
<description></description>
</property> <property>
<name>yarn.scheduler.capacity.root.acl_administer_queue</name>
<value>*</value>
<description></description>
</property> <property>
<name>yarn.scheduler.capacity.root.capacity</name>
<value>100</value>
</property> <property>
<name>yarn.scheduler.capacity.root.default.acl_submit_applications</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>50</value>
</property> <property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>70</value>
</property> <property>
<name>yarn.scheduler.capacity.root.default.state</name>
<value>RUNNING</value>
</property> <property>
<name>yarn.scheduler.capacity.root.default.user-limit-factor</name>
<value>1</value>
</property> <property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>default,spark,hadoop</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.acl_administer_queue</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.acl_submit_applications</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.capacity</name>
<value>30</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.maximum-capacity</name>
<value>70</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.minimum-user-limit-percent</name>
<value>100</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.ordering-policy</name>
<value>fifo</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.state</name>
<value>RUNNING</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.user-limit-factor</name>
<value>1</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.acl_administer_queue</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.acl_submit_applications</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.capacity</name>
<value>20</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.maximum-capacity</name>
<value>70</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.minimum-user-limit-percent</name>
<value>100</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.ordering-policy</name>
<value>fifo</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.state</name>
<value>RUNNING</value>
</property> <property>
<name>yarn.scheduler.capacity.root.hadoop.user-limit-factor</name>
<value>1</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.queues</name>
<value>spark1,spark2</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.acl_administer_queue</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.acl_submit_applications</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.capacity</name>
<value>50</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.maximum-capacity</name>
<value>70</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.minimum-user-limit-percent</name>
<value>100</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.ordering-policy</name>
<value>fifo</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.state</name>
<value>RUNNING</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark1.user-limit-factor</name>
<value>1</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.acl_administer_queue</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.acl_submit_applications</name>
<value>*</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.capacity</name>
<value>50</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.maximum-capacity</name>
<value>70</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.minimum-user-limit-percent</name>
<value>100</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.ordering-policy</name>
<value>fifo</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.state</name>
<value>RUNNING</value>
</property> <property>
<name>yarn.scheduler.capacity.root.spark.spark2.user-limit-factor</name>
<value>1</value>
</property>
</configuration>

Hadoop CapacitySchedule配置的更多相关文章

  1. CentOS 7 Hadoop安装配置

    前言:我使用了两台计算机进行集群的配置,如果是单机的话可能会出现部分问题.首先设置两台计算机的主机名 root 权限打开/etc/host文件 再设置hostname,root权限打开/etc/hos ...

  2. ubuntu下hadoop环境配置

    软件环境: 虚拟机:VMware Workstation 10 操作系统:ubuntu-12.04-desktop-amd64 JAVA版本:jdk-7u55-linux-x64 Hadoop版本:h ...

  3. hadoop(四):配置参数

    hadoop参数配置,主要是配置 core-site.xml,hdfs-site.xml,mapred-site.xml 三个配置文件,core-site.xml是全局配置,hdfs-site.xml ...

  4. hadoop mapred-queue-acls 配置(转)

    hadoop作业提交时可以指定相应的队列,例如:-Dmapred.job.queue.name=queue2通过对mapred-queue-acls.xml和mapred-site.xml配置可以对不 ...

  5. hadoop安装配置——伪分布模式

    1. 安装 这里以安装hadoop-0.20.2为例 先安装java,参考这个 去着下载hadoop 解压 2. 配置 修改环境变量 vim ~/.bashrc export HADOOP_HOME= ...

  6. Hadoop平台配置总结

    hadoop的配置,个人感觉是非常容易出问题.一个原因是要配置的地方多,还有个原因就是集群配置要在几台机器上都配置正确,才能保证配置好hadoop,跑起任务. 经过昨晚加今天上午的折腾,总算成功配好了 ...

  7. 有关hadoop分布式配置详解

    linux配置ssh无密码登录 配置ssh无密码登录,先要安装openssh,如下: yum install openssh-clients 准备两台linux服务器或虚拟机,设置两台linux的ho ...

  8. CentOS Hadoop安装配置详细

    总体思路,准备主从服务器,配置主服务器可以无密码SSH登录从服务器,解压安装JDK,解压安装Hadoop,配置hdfs.mapreduce等主从关系. 1.环境,3台CentOS7,64位,Hadoo ...

  9. Hadoop的配置过程(虚拟机中的伪分布模式)

    1引言 hadoop如今已经成为大数据处理中不可缺少的关键技术,在如今大数据爆炸的时代,hadoop给我们处理海量数据提供了强有力的技术支撑.因此,了解hadoop的原理与应用方法是必要的技术知识. ...

随机推荐

  1. MongoDB - MongoDB CRUD Operations, Delete Documents

    Delete Methods MongoDB provides the following methods to delete documents of a collection: Method De ...

  2. XML学习(1)

    什么是XML? XML是可拓展标记语言,类似HTML,它的设计宗旨是为了传输数据,而不是像HTML那样显示数据.XML标签没有被预定义,需要用户自定义标签. xml文档必须包含根元素,它是其他所有元素 ...

  3. 20165230 2017-2018-2 《Java程序设计》第9周学习总结

    20165230 2017-2018-2 <Java程序设计>第9周学习总结 教材学习内容总结 第十二章 java网络编程 学习了用于网络编程的类,了解URL.Socket.InetAdd ...

  4. python内置模块之itertools

    前言 itertools模块是python内置的迭代器模块,定义了可生成多种迭代器的函数,用来代替可迭代对象的遍历等操作,节约内存. 迭代器函数的类型 无限迭代器:包括count.cycle.repe ...

  5. 内核定时器的使用(好几个例子add_timer)【转】

    转自:http://blog.csdn.net/jidonghui/article/details/7449546 LINUX内核定时器是内核用来控制在未来某个时间点(基于jiffies)调度执行某个 ...

  6. MySQL 5.7半同步复制after sync和after commit详解【转】

    如果你的生产库开启了半同步复制,那么对数据的一致性会要求较高,但在MySQL5.5/5.6里,会存在数据不一致的风险.有这么一个场景,客户端提交了一个事务,master把binlog发送给slave, ...

  7. .net开源框架开源类库(整理)

    源:http://www.cnblogs.com/chinanetwind/p/3715809.html 常用库 Json.NET https://github.com/JamesNK/Newtons ...

  8. 微软Holographic将更名为Windows Mixed Reality

    微软Holographic将更名为Windows Mixed Reality ----世界变化好快.  还没来得及细细品味,它就已经更名了. 程序员的焦虑,处在一个信息大爆炸的年代,大数据,云计算,机 ...

  9. 03 Go 1.3 Release Notes

    Go 1.3 Release Notes Introduction to Go 1.3 Changes to the supported operating systems and architect ...

  10. python基础-类的反射

    1)反射是通过字符串方式映射内存中的对象. python中的反射功能是由以下四个内置函数提供:hasattr.getattr.setattr.delattr, 改四个函数分别用于对对象内部执行:检查是 ...