POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)
| Time Limit: 2000MS | Memory Limit: 10000K | |
| Total Submissions: 13372 | Accepted: 4340 |
Description
Input
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For example, for the following tree:

Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Hint
/* ***********************************************
Author :kuangbin
Created Time :2013-9-5 9:11:48
File Name :F:\2013ACM练习\专题学习\LCA\POJ1470_2.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* POJ 1470
* 给出一颗有向树,Q个查询
* 输出查询结果中每个点出现次数
*/
/*
* LCA离线算法,Tarjan
* 复杂度O(n+Q);
*/
const int MAXN = ;
const int MAXQ = ;//查询数的最大值 //并查集部分
int F[MAXN];//需要初始化为-1
int find(int x)
{
if(F[x] == -)return x;
return F[x] = find(F[x]);
}
void bing(int u,int v)
{
int t1 = find(u);
int t2 = find(v);
if(t1 != t2)
F[t1] = t2;
}
//************************
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Edge
{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} struct Query
{
int q,next;
int index;//查询编号
}query[MAXQ*];
int answer[MAXQ];//存储最后的查询结果,下标0~Q-1
int h[MAXQ];
int tt;
int Q; void add_query(int u,int v,int index)
{
query[tt].q = v;
query[tt].next = h[u];
query[tt].index = index;
h[u] = tt++;
query[tt].q = u;
query[tt].next = h[v];
query[tt].index = index;
h[v] = tt++;
} void init()
{
tot = ;
memset(head,-,sizeof(head));
tt = ;
memset(h,-,sizeof(h));
memset(vis,false,sizeof(vis));
memset(F,-,sizeof(F));
memset(ancestor,,sizeof(ancestor));
} void LCA(int u)
{
ancestor[u] = u;
vis[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(vis[v])continue;
LCA(v);
bing(u,v);
ancestor[find(u)] = u;
}
for(int i = h[u];i != -;i = query[i].next)
{
int v = query[i].q;
if(vis[v])
{
answer[query[i].index] = ancestor[find(v)];
}
}
} bool flag[MAXN];
int Count_num[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int u,v,k;
while(scanf("%d",&n) == )
{
init();
memset(flag,false,sizeof(flag));
for(int i = ;i <= n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v] = true;
addedge(u,v);
addedge(v,u);
}
}
scanf("%d",&Q);
for(int i = ;i < Q;i++)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
add_query(u,v,i);
}
int root;
for(int i = ;i <= n;i++)
if(!flag[i])
{
root = i;
break;
}
LCA(root);
memset(Count_num,,sizeof(Count_num));
for(int i = ;i < Q;i++)
Count_num[answer[i]]++;
for(int i = ;i <= n;i++)
if(Count_num[i] > )
printf("%d:%d\n",i,Count_num[i]);
}
return ;
}
POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)的更多相关文章
- POJ - 1470 Closest Common Ancestors(离线Tarjan算法)
1.输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 2.最近公共祖先,离线Tarjan算法 3. /* POJ 1470 给出一颗有向树,Q个查询 输出查询结果中每个点出现次 ...
- POJ 1470 Closest Common Ancestors(LCA&RMQ)
题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...
- POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】
<题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...
- poj 1470 Closest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...
- POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)
其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...
- POJ 1470 Closest Common Ancestors LCA题解
本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
- POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
随机推荐
- 【Android开发日记】之入门篇(六)——Android四大组件之Broadcast Receiver
广播接受者是作为系统的监听者存在着的,它可以监听系统或系统中其他应用发生的事件来做出响应.如设备开机时,应用要检查数据的变化状况,此时就可以通过广播来把消息通知给用户.又如网络状态改变时,电量变化时都 ...
- Python版飞机大战
前面学了java用java写了飞机大战这次学完python基础后写了个python版的飞机大战,有兴趣的可以看下. 父类是飞行物类是所有对象的父类,setting里面是需要加载的图片,你可以换称自己的 ...
- js面试题之求数组最值
今天继续分享js常见的面试题,求数组最大值,最小值,这里列举4种常见解法,还有其他方法也可以实现,读者知道可以私信我,我将把意见列举到博客中,欢迎提出意见. 第一种,利用数组排序 var arr=[3 ...
- Eclipse 配置语言环境
一.打开https://www.eclipse.org/babel/downloads.php 选择一下版本的Bable(通天塔) 选择 解压 打开Eclipse 软件 选择Help->inst ...
- C++有super关键字么?
很多人在学习Java之后,看到Java里面有super关键字,用来表示父类,那么C++里面有super关键字么? 答案是否定的.这也很容易理解,C++由于支持多继承,所以假设存在super关键字,那么 ...
- OpenCV 颜色空间转换参数CV_BGR2GRAY改变
OpenCV的颜色空间转换函数: C++: void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0 ) 参数d ...
- Hive(四)Hive的3种连接方式与DbVisualizer连接Hive
一.CLI连接 进入到 bin 目录下,直接输入命令: [root@node21 ~]# hive SLF4J: Class path contains multiple SLF4J bindings ...
- jquery选择里存在特殊字符,需要加双转义字符
//元素为:<input type="checkbox" value="abc/index" /> //处理选择器转义问题 //去除值 $val = ...
- 关于C语言的几个考试编程题目
提交要求:1:邮件名称:学号后三位-题目编号-姓名-期中考试.例如:098-1-沈苗-期中考试2:不用附件提交,直接写邮件,内容包括编程思路(写一段自己对题目的认识.思路.技术细节等).源代码.运行结 ...
- 浅谈jvm
1 .说起jvm,很多人感觉jvm离我们开发实际很远.但是,我们开发缺每时每刻都离不开jvm. a: java源码 编译后成.class字节码文件, b:根据classpath找到这个字节码文件, c ...