Closest Common Ancestors
Time Limit: 2000MS   Memory Limit: 10000K
Total Submissions: 13372   Accepted: 4340

Description

Write a program that takes as input a rooted tree and a list of pairs of vertices. For each pair (u,v) the program determines the closest common ancestor of u and v in the tree. The closest common ancestor of two nodes u and v is the node w that is an ancestor of both u and v and has the greatest depth in the tree. A node can be its own ancestor (for example in Figure 1 the ancestors of node 2 are 2 and 5)

Input

The data set, which is read from a the std input, starts with the tree description, in the form:

nr_of_vertices 
vertex:(nr_of_successors) successor1 successor2 ... successorn 
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form: 
nr_of_pairs 
(u v) (x y) ...

The input file contents several data sets (at least one). 
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.

Output

For each common ancestor the program prints the ancestor and the number of pair for which it is an ancestor. The results are printed on the standard output on separate lines, in to the ascending order of the vertices, in the format: ancestor:times 
For example, for the following tree: 

Sample Input

5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)

Sample Output

2:1
5:5

Hint

Huge input, scanf is recommended.
 /* ***********************************************
Author :kuangbin
Created Time :2013-9-5 9:11:48
File Name :F:\2013ACM练习\专题学习\LCA\POJ1470_2.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* POJ 1470
* 给出一颗有向树,Q个查询
* 输出查询结果中每个点出现次数
*/
/*
* LCA离线算法,Tarjan
* 复杂度O(n+Q);
*/
const int MAXN = ;
const int MAXQ = ;//查询数的最大值 //并查集部分
int F[MAXN];//需要初始化为-1
int find(int x)
{
if(F[x] == -)return x;
return F[x] = find(F[x]);
}
void bing(int u,int v)
{
int t1 = find(u);
int t2 = find(v);
if(t1 != t2)
F[t1] = t2;
}
//************************
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Edge
{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} struct Query
{
int q,next;
int index;//查询编号
}query[MAXQ*];
int answer[MAXQ];//存储最后的查询结果,下标0~Q-1
int h[MAXQ];
int tt;
int Q; void add_query(int u,int v,int index)
{
query[tt].q = v;
query[tt].next = h[u];
query[tt].index = index;
h[u] = tt++;
query[tt].q = u;
query[tt].next = h[v];
query[tt].index = index;
h[v] = tt++;
} void init()
{
tot = ;
memset(head,-,sizeof(head));
tt = ;
memset(h,-,sizeof(h));
memset(vis,false,sizeof(vis));
memset(F,-,sizeof(F));
memset(ancestor,,sizeof(ancestor));
} void LCA(int u)
{
ancestor[u] = u;
vis[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(vis[v])continue;
LCA(v);
bing(u,v);
ancestor[find(u)] = u;
}
for(int i = h[u];i != -;i = query[i].next)
{
int v = query[i].q;
if(vis[v])
{
answer[query[i].index] = ancestor[find(v)];
}
}
} bool flag[MAXN];
int Count_num[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int u,v,k;
while(scanf("%d",&n) == )
{
init();
memset(flag,false,sizeof(flag));
for(int i = ;i <= n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v] = true;
addedge(u,v);
addedge(v,u);
}
}
scanf("%d",&Q);
for(int i = ;i < Q;i++)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
add_query(u,v,i);
}
int root;
for(int i = ;i <= n;i++)
if(!flag[i])
{
root = i;
break;
}
LCA(root);
memset(Count_num,,sizeof(Count_num));
for(int i = ;i < Q;i++)
Count_num[answer[i]]++;
for(int i = ;i <= n;i++)
if(Count_num[i] > )
printf("%d:%d\n",i,Count_num[i]);
}
return ;
}

POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)的更多相关文章

  1. POJ - 1470 Closest Common Ancestors(离线Tarjan算法)

    1.输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 2.最近公共祖先,离线Tarjan算法 3. /* POJ 1470 给出一颗有向树,Q个查询 输出查询结果中每个点出现次 ...

  2. POJ 1470 Closest Common Ancestors(LCA&RMQ)

    题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...

  3. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

  4. poj 1470 Closest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...

  5. POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)

    其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...

  6. POJ 1470 Closest Common Ancestors LCA题解

    本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...

  7. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  8. POJ 1470 Closest Common Ancestors 【LCA】

    任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000 ...

  9. POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)

    Closest Common Ancestors Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 13370   Accept ...

随机推荐

  1. 【Android开发日记】之入门篇(六)——Android四大组件之Broadcast Receiver

    广播接受者是作为系统的监听者存在着的,它可以监听系统或系统中其他应用发生的事件来做出响应.如设备开机时,应用要检查数据的变化状况,此时就可以通过广播来把消息通知给用户.又如网络状态改变时,电量变化时都 ...

  2. Python版飞机大战

    前面学了java用java写了飞机大战这次学完python基础后写了个python版的飞机大战,有兴趣的可以看下. 父类是飞行物类是所有对象的父类,setting里面是需要加载的图片,你可以换称自己的 ...

  3. js面试题之求数组最值

    今天继续分享js常见的面试题,求数组最大值,最小值,这里列举4种常见解法,还有其他方法也可以实现,读者知道可以私信我,我将把意见列举到博客中,欢迎提出意见. 第一种,利用数组排序 var arr=[3 ...

  4. Eclipse 配置语言环境

    一.打开https://www.eclipse.org/babel/downloads.php 选择一下版本的Bable(通天塔) 选择 解压 打开Eclipse 软件 选择Help->inst ...

  5. C++有super关键字么?

    很多人在学习Java之后,看到Java里面有super关键字,用来表示父类,那么C++里面有super关键字么? 答案是否定的.这也很容易理解,C++由于支持多继承,所以假设存在super关键字,那么 ...

  6. OpenCV 颜色空间转换参数CV_BGR2GRAY改变

    OpenCV的颜色空间转换函数:   C++: void cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0 )   参数d ...

  7. Hive(四)Hive的3种连接方式与DbVisualizer连接Hive

    一.CLI连接 进入到 bin 目录下,直接输入命令: [root@node21 ~]# hive SLF4J: Class path contains multiple SLF4J bindings ...

  8. jquery选择里存在特殊字符,需要加双转义字符

    //元素为:<input type="checkbox" value="abc/index" /> //处理选择器转义问题 //去除值 $val = ...

  9. 关于C语言的几个考试编程题目

    提交要求:1:邮件名称:学号后三位-题目编号-姓名-期中考试.例如:098-1-沈苗-期中考试2:不用附件提交,直接写邮件,内容包括编程思路(写一段自己对题目的认识.思路.技术细节等).源代码.运行结 ...

  10. 浅谈jvm

    1 .说起jvm,很多人感觉jvm离我们开发实际很远.但是,我们开发缺每时每刻都离不开jvm. a: java源码 编译后成.class字节码文件, b:根据classpath找到这个字节码文件, c ...