[BinaryTree] 二叉搜索树(二叉查找树、二叉排序树)
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树BinarySort Tree)或者是一棵空树,或者是具有下列性质的二叉树:
(1)若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;
(2)若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值;
(3)它的左、右子树也分别为二叉查找树。
下面是它的几个重要函数:
插入结点:
【思路1】递归
终止条件(1,2):
1.若插入到一个空树中,则新建结点为根结点,左右孩子置为空,返回true
2.若等于根结点的值,返回false
3.若当前值小于根结点的值,递归左子树,否则递归右子树
template<class T>
bool BinarySearchTree<T>::InsertNode(BinaryTreeNode<T> * &root, T newpointer)
{
if (root == NULL)
{
root = new BinaryTreeNode<T>;
root->element = newpointer;
root->LeftChild = root->RightChild = NULL;
return true;
}
if (newpointer == root->element)
return false;
if (newpointer < root->element)
return InsertNode(root->LeftChild, newpointer);
else
return InsertNode(root->RightChild, newpointer);
}
【思路2】非递归
1.若二叉树为空,则首先单独生成根结点
2.执行查找算法,找出被插结点的父亲结点
3.判断被插结点是其父亲结点的左、右儿子,并将被插结点作为叶子结点插入
注:新插入的结点总是叶子结点
template<class T>
bool BinarySearchTree<T>::InsertNode(BinaryTreeNode<T> * &root, T newpointer)
{
if (root == NULL)
{
root = new BinaryTreeNode<T>;
root->element = newpointer;
root->LeftChild = root->RightChild = NULL;
return true;
}
BinaryTreeNode<T> *pointer = root;
while(pointer != NULL)
{
if (newpointer == pointer->element)
return false;
else if (newpointer < pointer->element)
{
if(pointer->LeftChild == NULL)
{
BinaryTreeNode<T>* l = new BinaryTreeNode<T>(newpointer);
l->LeftChild = l->RightChild = NULL;
pointer->LeftChild = l;
return true;
}
pointer = pointer->LeftChild;
}
else
{
if(pointer->RightChild == NULL)
{
BinaryTreeNode<T>* r = new BinaryTreeNode<T>(newpointer);
r->LeftChild = r->RightChild = NULL;
pointer->RightChild = r;
return true;
}
pointer = pointer->RightChild;
}
}
}
删除结点:
【思路】删除二叉搜索树中结点要根据删除的位置分情况讨论
1.删除叶子结点
操作:直接删除,更改它的父亲结点的相应指针场为空。

2.删除结点只有左儿子或只有右儿子
操作:将该结点的子树直接接到该结点位置

3.删除结点有两个子结点
(1)合并删除



(2)通过复制进行删除
选取替身(左子树中最大的结点或右子树中最小的结点)替换到删除结点的位置


template<class T>
void BinarySearchTree<T>::deleteBinarySearchTree(BinaryTreeNode<T>* root, T x)
{
bool find = false;
int flag = ;//标志要删除的结点是前驱结点pre的左孩子还是右孩子
BinaryTreeNode<T> *pre = NULL;
while (root && !find)
{
if (x == root->element)
{
find = true;
}
else if (x < root->element)
{
pre = root;
root = root->LeftChild;
flag = -;
}
else
{
pre = root;
root = root->RightChild;
flag = ;
}
}
if (root == NULL)
{
cout << "未找到要删除元素" << endl;
return;
}
//此时root为要删除结点 //要删除结点是叶子结点
if (root->isLeaf())
{
if (flag == )
{
delete root;
root = NULL;
}
else if (flag == -)
{
pre->LeftChild = NULL;
delete root;
root = NULL;
}
else
{
pre->RightChild = NULL;
delete root;
root = NULL;
}
} //要删除结点具有左右子结点
else if (root->LeftChild && root->RightChild)
{
//复制删除,选取左子树中最大的结点替换
BinaryTreeNode<T> *t = root;
BinaryTreeNode<T> *s = root->LeftChild;
while (s->RightChild)
{
t = s;
s = s->RightChild;
}
root->element = s->element; //此时S只有左孩子,需要连接到它的前驱结点t上
if (root == t)//while循环未执行
{
t->LeftChild = s->LeftChild;
}
else//while循环已执行
{
t->RightChild = s->LeftChild;
}
delete s;
s = NULL;
} else//要删除结点为单支子树根结点
{
if (flag == )//root为根结点
{
if (root->LeftChild)
{
pre = root;
root = root->LeftChild;
delete pre;
pre = NULL;
}
else
{
pre = root;
root = root->RightChild;
delete pre;
pre = NULL;
}
}
else if (flag == -)//root为pre的左子树
{
if (root->LeftChild)//要删除结点只存在左子树
{
pre->LeftChild = root->LeftChild;
delete root;
root = NULL;
}
else//要删除结点只存在右子树
{
pre->LeftChild = root->RightChild;
delete root;
root = NULL;
}
}
else//root为pre的右子树
{
if (root->LeftChild)//要删除结点只存在左子树
{
pre->RightChild = root->LeftChild;
delete root;
root = NULL;
}
else//要删除结点只存在右子树
{
pre->RightChild = root->RightChild;
delete root;
root = NULL;
}
}
}
}
查找结点:
【思路】分割式查找法:
1.若根结点的关键码等于查找的关键码,成功。
2.否则,若小于根结点的关键码,查其左子树;大于根结点的关键码,查其右子树。
二叉搜索树的高效率在于继续检索时只需查找两棵子树之一。
template<class T>
BinaryTreeNode<T>* BinarySearchTree<T>::Search(BinaryTreeNode<T>* root, T x)
{
BinaryTreeNode<T>* current = root;
while((NULL != current) && (x != current->element))
{
if(x < current->element)
current = Search(root->LeftChild,x);
else
current = Search(root->RightChild,x);
}
return current;
}
[BinaryTree] 二叉搜索树(二叉查找树、二叉排序树)的更多相关文章
- 《数据结构与算法分析——C语言描述》ADT实现(NO.03) : 二叉搜索树/二叉查找树(Binary Search Tree)
二叉搜索树(Binary Search Tree),又名二叉查找树.二叉排序树,是一种简单的二叉树.它的特点是每一个结点的左(右)子树各结点的元素一定小于(大于)该结点的元素.将该树用于查找时,由于二 ...
- 判断一棵树是否为二叉搜索树(二叉排序树) python
输入一棵树,判断这棵树是否为二叉搜索树.首先要知道什么是排序二叉树,二叉排序树是这样定义的,二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于它的 ...
- 二叉搜索树 & 二叉树 & 遍历方法
二叉搜索树 & 二叉树 & 遍历方法 二叉搜索树 BST / binary search tree https://en.wikipedia.org/wiki/Binary_searc ...
- 【Java】 大话数据结构(11) 查找算法(2)(二叉排序树/二叉搜索树)
本文根据<大话数据结构>一书,实现了Java版的二叉排序树/二叉搜索树. 二叉排序树介绍 在上篇博客中,顺序表的插入和删除效率还可以,但查找效率很低:而有序线性表中,可以使用折半.插值.斐 ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- OBST(Optimal Binary Tree最优二叉搜索树)
二叉搜索树 二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的 ...
- &12 二叉搜索树
#1,定义 二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的 ...
- 《剑指offer》— JavaScript(23)二叉搜索树的后序遍历序列
二叉搜索树的后序遍历序列 题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 相关知识 二叉查找树(B ...
- 剑指Offer——二叉搜索树的后序遍历序列
题目描述: 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 分析: 二叉查找树(Binary Search ...
随机推荐
- ab工具测试 swoole 和 ngixn+php-fpm 的并发对比
测试样例: 执行的一条sql记录的1w次插入分两组: 一组用nginx+pfm 来执行, 一组用swoole 来执行 公平性保证前提: @1.为了保证公平性, 在nginx里把 access_log, ...
- SAP销售订单屏幕字段控制隐藏,必输等
1.T-CODE:shd0 创建变式 , 点击确认按钮后,SAP进入下一个屏幕,然后重复上面的操作,直到所有屏幕已完成设置. 如果后续屏幕不需要设置,可点击“退出并保存”按钮.保存后,进入下图所示页 ...
- MySQL备份恢复之mydumper
Preface In my previous two blogs,we have known about the tool of backing up MySQL db.I'm gon ...
- collections模块的使用
1. Counter counter是collections中的一个模块, 它能够统计出字符串/文本中的每一个元素出现的次数, 并可以对结果进行进一步的处理. 使用方法 传入: 字符串 默认返回: C ...
- iWebShop产品功能技术优势有什么?
iwebshop基于iweb si 框架开发,在获得iweb si 技术平台支持的条件下,iwebshop可以轻松满足用户量级百万至千万级的大型电子商务网站的性能要求.站点的集群与分布式技术(分布式计 ...
- CentOS下配置jdk
CentOS下配置jdk 1.在jdk官网上下载最新版本的jdk 2.将jdk放到相应的位置,使用如下命令来解压. .0_181 /opt/data/ tar -zxf jdk-8u181-linux ...
- MySQL 主从服务器配置
在主服务器Ubuntu上进行备份,执行命令: mysqldump -uroot -p --all-databases --lock-all-tables > ~/master_db.sql -u ...
- python 装饰器 回顾 及练习
# 复习 # 讲作业 # 装饰器的进阶 # functools.wraps # 带参数的装饰器 # 多个装饰器装饰同一个函数 # 周末的作业 # 文件操作 # 字符串处理 # 输入输出 # 流程控制 ...
- JavaScript之原型 Prototype
1.我们所创建的每一个函数,解析器都会向函数中添加一个属性prototype.这个属性对应着一个对象,这个对象就是我们所谓的原型对象.如果函索作为普通函数调用prototype没有任何作用. 当函数以 ...
- Java——Random类随机整数---18.10.11
一.Random类的定义 1.Random类位于java.util包中,主要用于生成 伪随机数 2.random类将 种子数 作为随机算法的起源数字,计算生成伪随机数,其与生成的随机数字的区间无关 3 ...