题目描述

给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点走到n号点的最小费用。

输入

第一行包含一个正整数n(2<=n<=200000),表示点数。
接下来n行,每行包含两个整数x[i],y[i](0<=x[i],y[i]<=10^9),依次表示每个点的坐标。

输出

一个整数,即最小费用。

样例输入

5
2 2
1 1
4 5
7 1
6 7

样例输出

2


题解

最短路神题

这种题貌似不需要放思考过程?

发现$|x_1-x_2|$类型的边只有横坐标相邻的点之间有必要连,其余的都可以由这些边表示,因此按横坐标排序,相邻的点连边。纵坐标同理。

然后直接跑堆优化Dijkstra即可。

时间复杂度$O(n\log n)$

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 200010
using namespace std;
typedef pair<int , int> pr;
struct data
{
int x , y , id;
}a[N];
priority_queue<pr> q;
int head[N] , to[N << 2] , len[N << 2] , next[N << 2] , cnt , dis[N] , vis[N];
bool cmpx(data a , data b)
{
return a.x < b.x;
}
bool cmpy(data a , data b)
{
return a.y < b.y;
}
inline void add(int x , int y , int z)
{
to[++cnt] = y , len[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , len[cnt] = z , next[cnt] = head[y] , head[y] = cnt;
}
int main()
{
int n , i , x;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d%d" , &a[i].x , &a[i].y) , a[i].id = i;
sort(a + 1 , a + n + 1 , cmpx);
for(i = 1 ; i < n ; i ++ ) add(a[i].id , a[i + 1].id , a[i + 1].x - a[i].x);
sort(a + 1 , a + n + 1 , cmpy);
for(i = 1 ; i < n ; i ++ ) add(a[i].id , a[i + 1].id , a[i + 1].y - a[i].y);
memset(dis , 0x3f , sizeof(dis)) , dis[1] = 0 , q.push(pr(0 , 1));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(dis[to[i]] > dis[x] + len[i])
dis[to[i]] = dis[x] + len[i] , q.push(pr(-dis[to[i]] , to[i]));
}
printf("%d\n" , dis[n]);
return 0;
}

【bzoj4152】[AMPPZ2014]The Captain 堆优化Dijkstra的更多相关文章

  1. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  2. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  3. BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...

  4. 配对堆优化Dijkstra算法小记

    关于配对堆的一些小姿势: 1.配对堆是一颗多叉树. 2.包含优先队列的所有功能,可用于优化Dijkstra算法. 3.属于可并堆,因此对于集合合并维护最值的问题很实用. 4.速度快于一般的堆结构(左偏 ...

  5. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  6. 【堆优化Dijkstra+字典序最短路方案】HDU1385-Minimum Transport Cost

    [题目大意] 给出邻接矩阵以及到达各个点需要付出的代价(起点和终点没有代价),求出从给定起点到终点的最短路,并输出字典序最小的方案. [思路] 在堆优化Dijkstra中,用pre记录前驱.如果新方案 ...

  7. 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra

    题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...

  8. 堆优化Dijkstra计算最短路+路径计数

    今天考试的时候遇到了一道题需要路径计数,然而蒟蒻从来没有做过,所以在考场上真的一脸懵逼.然后出题人NaVi_Awson说明天考试还会卡SPFA,吓得我赶紧又来学一波堆优化的Dijkstra(之前只会S ...

  9. BZOJ4152 AMPPZ2014 The Captain 【最短路】【贪心】*

    BZOJ4152 AMPPZ2014 The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1号点 ...

随机推荐

  1. JavaScript文本框焦点事件

    效果图如下: <!-- 当文本框获得焦点时候,如果文本框内容是 请输入搜索关键字 清空文本框,输入内容变黑色 --> <!-- 当文本框失去焦点时候,如果文本框无内容,则添加灰色的 ...

  2. 吐血分享:QQ群霸屏技术教程2017(活跃篇)

    热门词的群排名,在前期优化准备充分的情况下,活跃度不失为必杀技. 在<吐血分享:QQ群霸屏技术(初级篇)>中,我们提及到热门词的群排名,有了前面的基础,我们就可以进入深度优化,实现绝对的霸 ...

  3. phpstudy apache启动失败,80端口占用问题解决方案

    安装phpstydy,启动apache时,启动失败,提示80端口占用,需要将占用80端口的服务进程关闭 1.运行cmd, netstat -ano 找到80端口对应的pid  4 2.一般都是调用 h ...

  4. 图的遍历(Python实现)

    图的遍历(Python实现) 记录两种图的遍历算法——广度优先(BFS)与深度优先(DFS). 图(graph)在物理存储上采用邻接表,而邻接表是用python中的字典来实现的. 两种遍历方式的代码如 ...

  5. python mac下安装虚拟环境

    Mac 下 Flask 框架 workon命令找不到 ---- 最终解决方案(详解具体实现操作过程中遇到的坑) Mac 下 Flask 的 全网最详细搭建 1.安装virtualenv和virtual ...

  6. python 使用生成器 来完成 监听文件输入的例子

    def tail(filename):#函数 f = open(filename,encoding='utf-8') while True: line = f.readline() if line.s ...

  7. C语言实例解析精粹学习笔记——32

    实例32: 编制一个包含姓名.地址.邮编和电话的通讯录输入和输出函数. 思路解析: 1.用结构体来完成姓名.地址.邮编和电话的组合. 2.结构体指针的使用. 3.malloc的使用 4.scanf函数 ...

  8. "Mon Dec 31 00:00:00 CST 2012" java日期装换 "yyyy-MM-dd"

    import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; import ja ...

  9. Python3乘法口诀表(由上至下+由下至上)

    一.所用知识点: 1.变量的使用. 2.循环语句的使用,这里用到的是双while循环.当然,使用其他的循环去做也是可以的.我认为,对于刚刚接触编程的人来说,使用双while循环比较容易理解. 3.使用 ...

  10. ABAP CDS ON HANA-(10)項目結合して一つ項目として表示

    Numeric Functions ABS(arg)  CEIL(arg) DIV(arg1, arg2) DIVISION(arg1, arg2, dec) FLOOR(arg) MOD(arg1, ...