Interviewe

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4543    Accepted Submission(s): 1108

Problem Description
YaoYao has a company and he wants to employ m people recently. Since his company is so famous, there are n people coming for the interview. However, YaoYao is so busy that he has no time to interview them by himself. So he decides to select exact m interviewers for this task.
YaoYao decides to make the interview as follows. First he queues the interviewees according to their coming order. Then he cuts the queue into m segments. The length of each segment is , which means he ignores the rest interviewees (poor guys because they comes late). Then, each segment is assigned to an interviewer and the interviewer chooses the best one from them as the employee.
YaoYao’s idea seems to be wonderful, but he meets another problem. He values the ability of the ith arrived interviewee as a number from 0 to 1000. Of course, the better one is, the higher ability value one has. He wants his employees good enough, so the sum of the ability values of his employees must exceed his target k (exceed means strictly large than). On the other hand, he wants to employ as less people as possible because of the high salary nowadays. Could you help him to find the smallest m?
 
Input
The input consists of multiple cases.
In the first line of each case, there are two numbers n and k, indicating the number of the original people and the sum of the ability values of employees YaoYao wants to hire (n≤200000, k≤1000000000). In the second line, there are n numbers v1, v2, …, vn (each number is between 0 and 1000), indicating the ability value of each arrived interviewee respectively.
The input ends up with two negative numbers, which should not be processed as a case.
 
Output
For each test case, print only one number indicating the smallest m you can find. If you can’t find any, output -1 instead.
 
Sample Input
11 300
7 100 7 101 100 100 9 100 100 110 110
-1 -1
 
Sample Output
3

Hint

We need 3 interviewers to help YaoYao. The first one interviews people from 1 to 3, the second interviews people from 4 to 6,
and the third interviews people from 7 to 9. And the people left will be ignored. And the total value you can get is 100+101+100=301>300.

 
Source
 
Recommend
zhengfeng   |   We have carefully selected several similar problems for you:  2888 3478 3487 3480 3485 
 

题意:

给出n个数,分成m段,每段取一个最大的,问m最小为多少时每段取到的最大的数的和大于K。

RMQ+二分:

时间卡很紧,800+ms  C++飘过。

这题有个trap,坑了我很久的trap。

RMQ+二分其实很快就写好了,问题是卡在数据上,先看看数据

11 300
7 100 7 101 100 100 9 100 100 110 110

10 1500
1 1 1 1 1000 1000 1 1 1 1

8 201
100 100 100 100 101 100 100 100

很明显第一组数据输出的是3,题目有解释。

到第二组数据呢?本来应该输出2才合理,可是运行结果却是输出了6.

第三组也是输出2才合理,可结果是输出了3。

个人觉得是数据有点问题,题目也有点问题,其实这题用二分过不了才对,因为看第二组和第三组数据可知,数据其实没有单调性。

贴一下代码:

 //781MS    16708K    1338 B    C++
#include<stdio.h>
#include<math.h>
#define N 200005
int v[N];
int dp[N][];
inline int Max(int a,int b)
{
return a>b?a:b;
}
void init(int n)
{
for(int i=;i<=n;i++)
dp[i][]=v[i];
for(int j=;j<;j++)
for(int i=;i+(<<j)-<=n;i++)
dp[i][j]=Max(dp[i][j-],dp[i+(<<(j-))][j-]);
}
inline int RMQ(int l,int r)
{
int m=(int)(log(1.0*(r-l+))/log(2.0));
return Max(dp[l][m],dp[r-(<<m)+][m]);
}
inline int getsum(int m,int mm)
{
int sum=;
for(int i=;i+mm-<=m*mm;i+=mm)
sum+=RMQ(i,i+mm-);
return sum;
}
int main(void)
{
int n,k;
while(scanf("%d%d",&n,&k)!=EOF)
{
if(n< || k<) break;
int sum=;
int maxn=;
for(int i=;i<=n;i++){
scanf("%d",&v[i]);
sum+=v[i];
maxn=Max(maxn,v[i]);
}
if(sum<=k){
puts("-1");continue;
}
if(maxn>k){
puts("");continue;
}
init(n);
int l=,r=n,mid;
while(l!=r){
mid=(l+r)/;
int ans=getsum(mid,n/mid);
printf("*%d %d\n",mid,ans);
if(ans<=k) l=mid+;
else r=mid;
}
printf("%d\n",l);
}
return ;
}
/* 11 300
7 100 7 101 100 100 9 100 100 110 110 10 1500
1 1 1 1 1000 1000 1 1 1 1 8 201
100 100 100 100 101 100 100 100 */

hdu 3486 Interviewe (RMQ+二分)的更多相关文章

  1. HDU 3486 Interviewe RMQ

    题意: 将\(n\)个数分成\(m\)段相邻区间,每段区间的长度为\(\left \lfloor \frac{n}{m} \right \rfloor\),从每段区间选一个最大值,要让所有的最大值之和 ...

  2. hdu 3484 Interviewe RMQ+二分

    #include <cstdio> #include <iostream> #include <algorithm> using namespace std; + ...

  3. HDU 5726 GCD (RMQ + 二分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5726 给你n个数,q个询问,每个询问问你有多少对l r的gcd(a[l] , ... , a[r]) ...

  4. HDU 3486 Interviewe

    题目大意:给定n个数的序列,让我们找前面k个区间的最大值之和,每个区间长度为n/k,如果有剩余的区间长度不足n/k则无视之.现在让我们找最小的k使得和严格大于m. 题解:二分k,然后求RMQ检验. S ...

  5. HDU - 5289 Assignment (RMQ+二分)(单调队列)

    题目链接: Assignment  题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...

  6. 3486 ( Interviewe )RMQ

    Problem Description YaoYao has a company and he wants to employ m people recently. Since his company ...

  7. Interviewe HDU - 3486 (ST表+枚举 )(非二分,看下这个数据、)

    YaoYao has a company and he wants to employ m people recently. Since his company is so famous, there ...

  8. hdu 5289 Assignment(2015多校第一场第2题)RMQ+二分(或者multiset模拟过程)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5289 题意:给你n个数和k,求有多少的区间使得区间内部任意两个数的差值小于k,输出符合要求的区间个数 ...

  9. HDU 5089 Assignment(rmq+二分 或 单调队列)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

随机推荐

  1. 【linux基于Postfix和Dovecot邮件系统的搭建】

    一:PostFixe和Dovecot的简单介绍 Postfix postfix是Wietse Venema在IBM的GPL协议之下开发的MTA(邮件传输代理)软件.postfix是Wietse Ven ...

  2. ECSHOP和SHOPEX快递单号查询百世快递插件V8.6专版

    发布ECSHOP说明: ECSHOP快递物流单号查询插件特色 本ECSHOP快递物流单号跟踪插件提供国内外近2000家快递物流订单单号查询服务例如申通快递.顺丰快递.圆通快递.EMS快递.汇通快递.宅 ...

  3. Redis的RDB与AOF介绍(Redis DateBase与Append Only File)

    RedisRDB介绍(Redis DateBase) 在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里 一.是什么? Redis会 ...

  4. go学习笔记-变量作用域

    变量作用域 作用域为已声明标识符所表示的常量.类型.变量.函数或包在源代码中的作用范围. 变量可以在三个地方声明: 函数内定义的变量称为局部变量 函数外定义的变量称为全局变量 函数定义中的变量称为形式 ...

  5. Kubernetes-创建集群(四)

    Kubernetes可以运行在多种平台,从笔记本到云服务商的虚拟机,再到机架上的裸机服务器.要创建一个Kubernetes集群,根据不同的场景需要做的也不尽相同,可能是运行一条命令,也可能是配置自己定 ...

  6. 【Leetcode】807. Max Increase to Keep City Skyline

    Description In a 2 dimensional array grid, each value grid[i][j] represents the height of a building ...

  7. C# 面试题 (一)

    一.C# 理论 1.1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 private : 私有成员, 在类 ...

  8. 【转】iOS库 .a与.framework区别

    转自:http://blog.csdn.net/lvxiangan/article/details/43115131 一.什么是库? 库是共享程序代码的方式,一般分为静态库和动态库. 二.静态库与动态 ...

  9. 掘金 Android 文章精选合集

    掘金 Android 文章精选合集 掘金官方 关注 2017.07.10 16:42* 字数 175276 阅读 50053评论 13喜欢 669 用两张图告诉你,为什么你的 App 会卡顿? - A ...

  10. Less入门教程

    http://www.cnblogs.com/fsjohnhuang/p/4187675.html