Description

This year, there have been many problems with population calculations, since in some cities, there are many emigrants, or the population growth is very high. Every year the ACM (for Association for Counting Members) conducts a census in each region. The country is divided into N^2 regions, consisting of an N x N grid of regions. Your task is to find the least, and the greatest population in some set of regions. Since in a single year there is no significant change in the populations, the ACM modifies the population counts by some number of inhabitants.

The Input

In the first line you will find N (0 <= N <= 500), in following the N lines you will be given N numbers, which represent, the initial population of city C [i, j]. In the following line is the number Q (Q <= 40000), followed by Q lines with queries: 
There are two possible queries: 
- "x1 y1 x2 y2" which represent the coordinates of the upper left and lower right of where you must calculate the maximum and minimum change in population. 
- "x y v" indicating a change of the population of city C [x, y] by value v.

The Output

For each query, "x1 y1 x2 y2" print in a single line the greatest and least amount of current population. Separated each output by a space.

题目大意:一个n*m的矩阵上有些数,单点修改,区域查询。

思路:二维线段树裸题。抄个代码体验一下。

代码(502MS):

 #include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int INF = 0x7fffffff;
const int MAXN = ;
struct IntervaTree2D {
int Max[MAXN][MAXN], Min[MAXN][MAXN], n, m;
int xo, xleaf, x1, y1, x2, y2, x, y, v, vmax, vmin; void query1D(int o, int L, int R) {
if(y1 <= L && R <= y2) {
vmax = max(vmax, Max[xo][o]); vmin = min(vmin, Min[xo][o]);
}
else {
int M = (L + R) >> ;
if(y1 <= M) query1D(o * , L, M);
if(M < y2) query1D(o * + , M + , R);
}
} void query2D(int o, int L, int R) {
if(x1 <= L && R <= x2) {xo = o; query1D(, , m);}
else {
int M = (L + R) >> ;
if(x1 <= M) query2D(o * , L, M);
if(M < x2) query2D(o * + , M + , R);
}
} void modify1D(int o, int L, int R) {
if(L == R) {
if(xleaf) {Max[xo][o] = Min[xo][o] = v; return ;}
Max[xo][o] = max(Max[xo * ][o], Max[xo * + ][o]);
Min[xo][o] = min(Min[xo * ][o], Min[xo * + ][o]);
}
else {
int M = (L + R) >> ;
if(y <= M) modify1D(o * , L, M);
else modify1D(o * + , M + , R);
Max[xo][o] = max(Max[xo][o * ], Max[xo][o * + ]);
Min[xo][o] = min(Min[xo][o * ], Min[xo][o * + ]);
}
} void modify2D(int o, int L, int R) {
if(L == R) {xo = o; xleaf = ; modify1D(, , m);}
else {
int M = (L + R) / ;
if(x <= M) modify2D(o * , L, M);
else modify2D(o * + , M + , R);
xo = o; xleaf = ; modify1D(, , m);
}
} void query() {vmax = -INF; vmin = INF; query2D(, , n);}
void modify() {modify2D(, , n);}
} t; int main() {
int n, m, Q;
char op[];
scanf("%d%d", &n, &m);
t.n = n; t.m = m;
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
scanf("%d", &t.v);
t.x = i, t.y = j;
t.modify();
}
scanf("%d", &Q);
while(Q--) {
scanf("%s", op);
if(*op == 'q') {
scanf("%d%d%d%d", &t.x1, &t.y1, &t.x2, &t.y2);
t.query();
printf("%d %d\n", t.vmax, t.vmin);
} else {
scanf("%d%d%d", &t.x, &t.y, &t.v);
t.modify();
}
}
return ;
}

UVA 11297 Census(二维线段树)的更多相关文章

  1. UVa 11297 Census (二维线段树)

    题意:给定上一个二维矩阵,有两种操作 第一种是修改 c x y val 把(x, y) 改成 val 第二种是查询 q x1 y1 x2 y2 查询这个矩形内的最大值和最小值. 析:二维线段树裸板. ...

  2. UVA 11297 Census ——二维线段树

    [题目分析] 二维线段树模板题目. 简直就是无比的暴力.时间复杂度为两个log. 标记的更新方式比较奇特,空间复杂度为N^2. 模板题目. [代码] #include <cstdio> # ...

  3. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  4. POJ2155 Matrix二维线段树经典题

    题目链接 二维树状数组 #include<iostream> #include<math.h> #include<algorithm> #include<st ...

  5. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  6. poj 2155:Matrix(二维线段树,矩阵取反,好题)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17880   Accepted: 6709 Descripti ...

  7. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  8. POJ 2155 Matrix (二维线段树)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17226   Accepted: 6461 Descripti ...

  9. HDU 4819 Mosaic (二维线段树)

    Mosaic Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)Total S ...

随机推荐

  1. Python学习之路——基础2(含深浅拷贝)

    逻辑运算符:not  and  or 等同于c/c++中的 !.&&.||,除了写法上的不同,实际原理是一样的. 运算也遵循短路原则.由于Python本身不支持++/--操作符,所以避 ...

  2. linux系统下病毒排除思路

    1.top查看是否有特别吃cpu和内存的进程,病毒进程kill是杀不死的,因为ps命令被修改 2.ls -la /proc/病毒进程pid/  pwd为病毒进程程序目录 一般在/usr/bin下 3. ...

  3. linux系统基础之---RPM管理(基于centos7.4)

  4. 简单Maven Dos命令语句

    简单Maven Dos命令语句: 打包:mvn package 编译:mvn compile 编译测试程序:mvn test-compile 清空:mvn clean 运行测试:mvn test 生成 ...

  5. 关于antd-mobile中列表上拉加载PullToRefresh的使用

    相信有很多小伙伴发现antd-mobile中的下拉刷新组件,也发现例子挺难的,其实这个组件并没有那么复杂,只是demo例子不好理解,给大家提供一个简单的demo,或许可以帮到你 上拉刷新下拉加载 - ...

  6. 【PHP项目】产品新增的多图上传

    产品新增:多图上传 1:html的更改 在 type=file的input框中添加multiple="multiple" name属性中必须添加[] ,否则$_FILES只能接收最 ...

  7. 嵌入式Linux系统移植(二)——交叉编译工具集

    常用工具:readelf.size.nm.strip.strings.objdump.objcopy.addr2line readelf:读可执行文件的elf头 ELF Header: Magic: ...

  8. 洛谷U32670 小凯的数字(比赛)

    题目网址 https://www.luogu.org/problemnew/show/U32670 题目背景 NOIP2018 原创模拟题T1 NOIP DAY1 T1 or DAY 2 T1 难度 ...

  9. 8-C++远征之继承篇-学习笔记

    C++远征之继承篇 开篇介绍 整个C++远征计划: 起航->离港->封装->继承 为什么要用继承? 为什么要有继承? 如何来定义基类 <----> 派生类? 基类到派生类 ...

  10. springmvc 配置多视图(jsp,freemarker,HTML等)

    SpringMVC 的 Controller 可以返回各种各样的视图.比如 JSP, JSON, Velocity, FreeMarker, XML, PDF, Excel, 还有Html字符流 等等 ...