首先介绍一下Shark的概念

Shark简单的说就是Spark上的Hive,其底层依赖于Hive引擎的

但是在Spark平台上,Shark的解析速度是Hive的几多倍

它就是Hive在Spark上的体现,并且是升级版,一个强大的数据仓库,并且是兼容Hive语法的

下面给出一张来自网上的Shark构架图

从图上可以看出,Spark的最底层大部分还是基于HDFS的,Shark中的数据信息等也是对应着HDFS上的文件

从图中绿色格子中可以看到,在Shark的整个构架中HiveQL的引擎还是占据着底层不可分割的部分,而Meta store的制度是Hive的根本,对Shark的重要性自然不言而喻

Shark中创建一张外部分区表的代码格式如下:

create [external] table [if not exists] table_name(col_name data_type,…)

[partitioned by (col_name data_type,…)]

[row format row_format]

[fields terminated by ‘\t’]

[lines terminated by ‘\n’]

[stored as file_format]

[location hdfs_path]

基本和Hive的格式没有什么差别

在Shark中还有一种高效的表,叫做缓存表

创建缓存表的方式如下:

create table xx_cached as select …

只要在表名的最后加上_cached即可

缓存表顾名思义,将查询到的数据生成表存储在缓存中,再次查询的时候速度将是几何提升的

Shark的用法:

在Spark的bin目录下使用shark脚本进入客户端程序

shark -f 要执行的.sql文件位置

执行完后可以就生成对应的表,可以再客户端中使用SQL语句进行查询

但是…

对比起Hive,如此好用性能又好的Shark

在Spark1.0版本开始,Shark被官方抛弃了…

Why?

原因就是Shark太过依赖于Hive了,导致执行任务的时候不能灵活的添加新的优化策略

于是Spark团队决定从头开发一套完全脱离Hive,基于Spark平台的数据仓库框架

于是SparkSQL诞生了

相对于Shark,SparkSQL有什么优势呢?

第一,也是根本SparkSQL产生的根本原因,其完全脱离了Hive的限制

第二,SparkSQL支持查询原生的RDD,这点就极为关键了。RDD是Spark平台的核心概念,是Spark能够高效的处理大数据的各种场景的基础

第三,能够在Scala中写SQL语句。支持简单的SQL语法检查,能够在Scala中写Hive语句访问Hive数据,并将结果取回作为RDD使用

第四,Catalyst。Catalyst能够帮助用户优化查询,即使用户的水平不高,写不出高效率的代码,Catalyst也能够进行一定程度的性能优化

简简单单的从以上几点就可以看出,SparkSQL和Shark相比,在性能和可用性方面肯定提升了几个等级

在大数据处理领域,批处理、实时处理和交互式查询是三个主要的处理方式,SparkSQL诞生就是为了解决Spark平台上的交互式查询问题,并且提供SQL接口兼容原有数据库用户的使用习惯

这里要重点注意一下Catalyst部分。

Catalyst是SparkSQL的调度核心,翻译SQL语句形成执行计划的过程中会对其进行优化并且仍然是遵循DAG图

执行流程:

  1. SqlParser 对SQL语法进行解析
  2. Analyzer进行属性和关系关联校验
  3. Optimizer进行启发式逻辑查询优化
  4. QueryPlanner将逻辑查询计划转化为物理查询计划
  5. prepareForExecution调整数据分布,转换为执行计划
  6. 进入Spark执行空间转为DAG图执行

下面给出一张网上的SparkSQL构架图:

可以明显的看到,在Shark中出于底层关键地位的Hive变成了顶层可变的程序模块

并且SparkSQL还支持JDBC/ODBC等数据库接口和JSON格式,Parquet格式的数据

支持Java ,Python等编程接口

SparkSQL运行流程图:

文章的最后给出一段SparkSQL的实例代码(Scala语言):

val sc:SparkContext //定义一个SparkContext类型的常量sc,SparkContext是Spark中提交作业的唯一通道
val sqlContext = new SqlContext(sc)//根据sc new一个SqlContext对象,该对象是处理SparkSQL的
import sqlContext._ //引入sqlContext中的所有方法,这些方法是处理SQL语句的基础
case class Person(name:String,age:String)//定义一个Person类,case class是后面数据能够生产SchemaRDD的关键
val people:RDD[Person] = sc.textFile("people.txt").map(_.split(",")).map(p => Person(p(0),p(1).toInt))//定义一个RDD数组,类型为Person,从people.txt文件中读取数据生成RDD,根据,进行split之后进行map操作,将每一行记录都生成对应的Person对象
people.registerAsTable("people")//将得到的RDD数组注册为表“people”
val teenagers = sql("select name from people where age >= 10 && age <= 19")//定义要执行的sql语句
teenagers.map(t => "Name:" + t(0)).collect().foreach(println)//循环打印出teenagers中的每个对象的名字

Spark(三) -- Shark与SparkSQL的更多相关文章

  1. Spark视频 王家林 Spark公开课大讲坛第二期: Spark的Shark和SparkSQL

    王家林 Spark公开课大讲坛第一期:Spark把云计算大数据速度提高100倍以上 http://edu.51cto.com/lesson/id-30816.html Spark实战高手之路 系列书籍 ...

  2. Spark、Shark集群安装部署及遇到的问题解决

    1.部署环境 OS:Red Hat Enterprise Linux Server release 6.4 (Santiago) Hadoop:Hadoop 2.4.1 Hive:0.11.0 JDK ...

  3. Spark(九) -- SparkSQL API编程

    本文测试的Spark版本是1.3.1 Text文本文件测试 一个简单的person.txt文件内容为: JChubby,13 Looky,14 LL,15 分别是Name和Age 在Idea中新建Ob ...

  4. spark复习笔记(7):sparkSQL

    一.saprkSQL模块,使用类sql的方式访问Hadoop,实现mr计算,底层使用的是rdd 1.hive //hadoop  mr  sql 2.phenoix //hbase上构建sql的交互过 ...

  5. Spark(三): 安装与配置

    参见 HDP2.4安装(五):集群及组件安装 ,安装配置的spark版本为1.6, 在已安装HBase.hadoop集群的基础上通过 ambari 自动安装Spark集群,基于hadoop yarn ...

  6. spark三种连接Join

    本文主要介绍spark join相关操作. 讲述spark连接相关的三个方法join,left-outer-join,right-outer-join,在这之前,我们用hiveSQL先跑出了结果以方便 ...

  7. Spark(十三)SparkSQL的自定义函数UDF与开窗函数

    一 自定义函数UDF 在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_ ...

  8. spark 三种数据集的关系(二)

    一个Dataset是一个分布式的数据集,而且它是一个新的接口,这个新的接口是在Spark1.6版本里面才被添加进来的,所以要注意DataFrame是先出来的,然后在1.6版本才出现的Dataset,提 ...

  9. Spark(二十一)【SparkSQL读取Kudu,写入Kafka】

    目录 SparkSQL读取Kudu,写出到Kafka 1. pom.xml 依赖 2.将KafkaProducer利用lazy val的方式进行包装, 创建KafkaSink 3.利用广播变量,将Ka ...

随机推荐

  1. HDU3910(数学期望题,题目难懂)

    Liang Guo Sha Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  2. kvm的vmcall

    这几个接口的区别在于参数个数的不用,本质是一样的.挑个参数最多的看下: static inline long kvm_hypercall4(unsigned int nr, unsigned long ...

  3. react native windows 搭建(完整版)

    声明:用windows 搭建的react native只能开发安卓应用 1.准备安装java jdk,以及Android SDK 传送门: java   JDK   Android SDK(自行寻找) ...

  4. docker的存储结构,和以前有了很大不同

    在网上学习这一块知识点时,有一个URL讲得很详细, docker 镜像与容器存储目录结构精讲 http://blog.csdn.net/wanglei_storage/article/details/ ...

  5. .net core 2.0 报错:error NU1102: Unable to find package ...

    原文地址:传送门 这种是nuget无法还原的问题.解决问题的方法: 在项目文件所在的目录下创建文件:NuGet.Config 里面内容: <?xml version="1.0" ...

  6. (一)安装openvpn服务器端

    环境 centos版本 [root@localhost ~]# cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) 关闭cento ...

  7. MySQL 一般模糊查询的几种用法

    1.%:表示零个或多个字符.在某些情况下需要中文查询,一般用两个%来查询,即%%: select * from user where name like %五%; -->表示:查询user表中的 ...

  8. HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)

    6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...

  9. codeforces Round #440 A Search for Pretty Integers【hash/排序】

    A. Search for Pretty Integers [题目链接]:http://codeforces.com/contest/872/problem/A time limit per test ...

  10. CodeForces 32C Flea

    题目链接:http://codeforces.com/problemset/problem/32/C 本文链接:http://www.cnblogs.com/Ash-ly/p/5513436.html ...