L - Sum It Up

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

Description

Given a specified total t and a list of n integers, find all distinct sums using numbers from the list that add up to t. For example, if t = 4, n = 6, and the list is [4, 3, 2, 2, 1, 1], then there are four different sums that equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.

Input

The input will contain one or more test cases, one per line. Each test case contains t, the total, followed by n, the number of integers in the list, followed by n integers x 1 , . . . , x n . If n = 0 it signals the end of the input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear in nonincreasing order, and there may be repetitions.

Output

For each test case, first output a line containing `Sums of', the total, and a colon. Then output each sum, one per line; if there are no sums, output the line `NONE'. The numbers within each sum must appear in nonincreasing order. A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.

Sample Input

4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0

Sample Output

Sums of 4: 4 3+1 2+2 2+1+1 Sums of 5: NONE Sums of 400: 50+50+50+50+50+50+25+25+25+25 50+50+50+50+50+25+25+25+25+25+25

//一般的bfs,关键的在于同一个位置不能放同样的数。

 #include <iostream>
#include <algorithm>
using namespace std; int num[];
int way[];
int T,N;
int all,all_ti; void dfs(int now)
{
if (all==T)
{
int i=;
for (;i<=N;i++)
{
if (way[i]==)
{
cout<<num[i];
break;
}
}
for (i++;i<=N;i++)
{
if (way[i]==)
{
cout<<"+"<<num[i];
}
}
cout<<endl; all_ti++;
way[now]=;
all-=num[now];
}
else
{
int last=-;
for (int j=now;j<=N;j++)
{
if (way[j]== && num[j]+all<=T&&last!=num[j])
{
last=num[j];
way[j]=;
all+=num[j];
dfs(j); }
}
way[now]=;
all-=num[now];
} } int cmp(int x,int y)
{return x>y;} int main()
{ while (cin>>T>>N)
{
if (N==) break;
all=all_ti=;
for (int i=;i<=N;i++)
{
cin>>num[i];
way[i]=;
}
sort(num+,num++N,cmp);
cout<<"Sums of "<<T<<":"<<endl;
dfs();
if (all_ti==) cout<<"NONE"<<endl; }
return ;
}


L - Sum It Up(DFS)的更多相关文章

  1. POJ 1562(L - 暴力求解、DFS)

    油田问题(L - 暴力求解.DFS) Description The GeoSurvComp geologic survey company is responsible for detecting ...

  2. HDOJ(HDU).1258 Sum It Up (DFS)

    HDOJ(HDU).1258 Sum It Up (DFS) [从零开始DFS(6)] 点我挑战题目 从零开始DFS HDOJ.1342 Lotto [从零开始DFS(0)] - DFS思想与框架/双 ...

  3. LeetCode Path Sum II (DFS)

    题意: 给一棵二叉树,每个叶子到根的路径之和为sum的,将所有可能的路径装进vector返回. 思路: 节点的值可能为负的.这样子就必须到了叶节点才能判断,而不能中途进行剪枝. /** * Defin ...

  4. LeetCode Combination Sum II (DFS)

    题意: 在集合candidates中选出任意多个元素,使得他们的和为target,返回所有的组合,以升序排列. 思路: 难点在于如何去重,比如集合{1,1,2},target=3,那么只有一个组合就是 ...

  5. LeetCode Combination Sum III (DFS)

    题意: 在1-9这9个数字中选择k个出来,若他们的和为n,则加入答案序列,注意升序. 思路: 用DFS的方式,每次决定一个数字,共决策k次.假设上个决策是第i位为5,那么i+1位的范围就是6-9. c ...

  6. (step4.3.4)hdu 1258(Sum It Up——DFS)

    题目大意:输入t,n,接下来有n个数组成的一个序列.输出总和为t的子序列 解题思路:DFS 代码如下(有详细的注释): #include <iostream> #include <a ...

  7. hdu1258 Sum It Up (DFS)

    Problem Description Given a specified total t and a list of n integers, find all distinct sums using ...

  8. nyoj 927 The partial sum problem(dfs)

    描述 One day,Tom’s girlfriend give him an array A which contains N integers and asked him:Can you choo ...

  9. HDU 1258 Sum It Up(DFS)

    题目链接 Problem Description Given a specified total t and a list of n integers, find all distinct sums ...

随机推荐

  1. vue - config

    build/build.js -> config 详细的config配置走向.

  2. Linux学习笔记 (四)归档和压缩

    一.zip压缩命令: 1.压缩文件: 格式:zip 压缩文件 源文件 例:zip abc.zip abc  //将abc文件压缩到abc.zip文件内. 2.压缩目录: 格式:zip –r 压缩目录 ...

  3. libevent2源码分析之五:关键的调用链

    用一个调用链来表示函数调用的流程,看起来更直观.根据上面的分析,总结了一些重要的调用链. 初始化 event_base_new event_base_new_with_config min_heap_ ...

  4. Java: 获取当前执行位置的文件名/类名/方法名/行号

    在 JAVA 程序有时需要获取当前代码位置, 于是就利用 Thread.currentThread().getStackTrace() 写了下面这个工具类, 用来获取当前执行位置处代码的文件名/类名/ ...

  5. JPA学习笔记1——JPA基础 (转自CSDN)

    http://blog.csdn.net/chjttony/article/details/6086298 1.JPA简介: Java持久化规范,是从EJB2.x以前的实体Bean(Entity be ...

  6. Java中super的几种使用方法并与this的差别

    1.     子类的构造函数假设要引用super的话,必须把super放在函数的首位. class Base { Base() { System.out.println("Base" ...

  7. L​i​n​u​x​关​闭​防​火​墙​命​令

    (1) 重启后永久性生效: 开启: chkconfig iptables on 关闭: chkconfig iptables off (2) 即时生效,重启后失效: 开启: service iptab ...

  8. Linux----LVM扩容磁盘空间(讲的也很好)

    转:https://www.cnblogs.com/tail-f/p/6143085.html

  9. objective-c的观察者模式

    addObserver即添加消息响应函数.postNotificationName即发消息.

  10. C++避免内存泄漏的一种技巧

    C++ Primer 4th中在section 13.5中的U_Ptr就是一种实用的例子 通过计数的方式,并提供自己的抽象类型的Pointer,从而实现内存管理.在一定的范围内还是非常有效的,比如说在 ...