3218: a + b Problem

Time Limit: 20 Sec  Memory Limit: 40 MB
Submit: 2229  Solved: 836
[Submit][Status][Discuss]

Description

Input

 

Output

 

Sample Input

10
0 1 7 3 9 2
7 4 0 9 10 5
1 0 4 2 10 2
7 9 1 5 7 2
6 3 5 3 6 2
6 6 4 1 8 1
6 1 6 0 6 5
2 2 5 0 9 3
5 1 3 0 2 5
5 6 7 1 1 2

Sample Output

55

HINT

 

Source

此题是一个选择性问题,明显是用网络流来解决。

考虑没有p限制,这是一个最大权闭合子图问题。

从S像每一个i连一条bi的边,从i向T连一条wi的边,跑最小割即可。

对于p限制,我们要体现出要是没割wi且存在一个aj使得他在li-ri之间,他就要变得奇怪。

所以我们可以将i拆成两个点i,i+n。

从i向i+n连一条容量为pi的边,从i+n向每一个满足条件的j连一条inf的边。

由于n为5000,考虑使用主席树优化建图即可解决。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define maxm 1000005
#define maxn 5005
#define inf 999999999
using namespace std;
inline int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
int ans=,n;
struct Edge {int to,nxt,c;}e[maxm*];
int head[maxn*],cnt;
inline void add(int u,int v,int c) {e[cnt].nxt=head[u];e[cnt].to=v;e[cnt].c=c;head[u]=cnt++;swap(u,v);c=;e[cnt].nxt=head[u];e[cnt].to=v;e[cnt].c=c;head[u]=cnt++;}
int a[maxn],b[maxn],w[maxn],l[maxn],r[maxn],p[maxn],hsh[maxn*],sum;
int S,T,sz;
struct seg {int l,r;}t[maxn*];
int rt[maxn*];
inline void query(int l,int r,int x,int L,int R,int point) {
if(!x||L>r||R<l) return;
if(L<=l&&R>=r) {add(point,x,inf);return;}
int mid=(l+r)>>;
if(L<=mid) query(l,mid,t[x].l,L,R,point);
if(R>mid) query(mid+,r,t[x].r,L,R,point);
return;
}
inline void insert(int l,int r,int &x,int pre,int pos,int point) {
x=++sz;
if(l==r&&pre>) add(x,pre,inf);
if(l==r) {add(x,point,inf);return;}
t[x]=t[pre];
int mid=(l+r)>>;
if(pos<=mid) insert(l,mid,t[x].l,t[pre].l,pos,point);
else insert(mid+,r,t[x].r,t[pre].r,pos,point);
if(t[x].l) add(x,t[x].l,inf);
if(t[x].r) add(x,t[x].r,inf);
}
int q[maxn*],dis[maxn*];
inline bool bfs() {
for(int i=;i<=sz;i++) dis[i]=-;
int hd=,tl=;
q[]=T;dis[T]=;
while(hd!=tl) {
int now=q[hd++];if(hd==) hd=;
for(int i=head[now];i>=;i=e[i].nxt) {
int to=e[i].to;if(dis[to]>-||!e[i^].c) continue;
dis[to]=dis[now]-;q[tl++]=to;
if(tl==) tl=;
}
}
return dis[S]>-;
}
inline int dfs(int x,int mxf) {
if(!mxf||x==T) return mxf;
int nf=;
for(int i=head[x];i>=;i=e[i].nxt) {
int to=e[i].to;
if(e[i].c&&dis[to]==dis[x]+) {
int f=dfs(to,min(mxf,e[i].c));
mxf-=f;e[i].c-=f;
e[i^].c+=f;nf+=f;
if(!mxf) break;
}
}
if(!nf) dis[x]=-;
return nf;
}
inline void dinic() {while(bfs()) ans-=dfs(S,inf);}
int main() {
memset(head,-,sizeof(head));
n=read();S=*n+,T=*n+;sz=T;
for(int i=;i<=n;i++) {
a[i]=read(),b[i]=read(),w[i]=read(),l[i]=read(),r[i]=read(),p[i]=read();
hsh[++sum]=a[i];hsh[++sum]=l[i];hsh[++sum]=r[i];
ans+=w[i]+b[i];
}
sort(hsh+,hsh+sum+);sum=unique(hsh+,hsh+sum+)-hsh-;
for(int i=;i<=n;i++) {
a[i]=lower_bound(hsh+,hsh+sum+,a[i])-hsh;
l[i]=lower_bound(hsh+,hsh+sum+,l[i])-hsh;
r[i]=lower_bound(hsh+,hsh+sum+,r[i])-hsh;
add(S,i,b[i]);add(i,i+n,p[i]);add(i,T,w[i]);
}
for(int i=;i<=n;i++) {
if(i>) query(,sum,rt[i-],l[i],r[i],i+n);
insert(,sum,rt[i],rt[i-],a[i],i);
}
dinic();printf("%d\n",ans);
}

[bzoj3218]a + b Problem 网络流+主席树优化建图的更多相关文章

  1. bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...

  2. 【BZOJ4383】[POI2015]Pustynia 线段树优化建图

    [BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...

  3. AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图

    AtCoder Regular Contest 069 F Flags 二分,2-sat,线段树优化建图 链接 AtCoder 大意 在数轴上放上n个点,点i可能的位置有\(x_i\)或者\(y_i\ ...

  4. loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点

    loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...

  5. bzoj3073: [Pa2011]Journeys 线段树优化建图

    bzoj3073: [Pa2011]Journeys 链接 BZOJ 思路 区间和区间连边.如何线段树优化建图. 和单点连区间类似的,我们新建一个点,区间->新点->区间. 又转化成了单点 ...

  6. BZOJ 3073: [Pa2011]Journeys Dijkstra+线段树优化建图

    复习一下线段树优化建图:1.两颗线段树的叶子节点的编号是公用的. 2.每次连边是要建两个虚拟节点 $p1,p2$ 并在 $p1,p2$ 之间连边. #include <bits/stdc++.h ...

  7. BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图

    Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...

  8. 【BZOJ3218】a + b Problem 可持久化线段树优化建图

    [BZOJ3218]a + b Problem 题解:思路很简单,直接最小割.S->i,容量为Bi:i->T,容量为Wi:所有符合条件的j->new,容量inf:new->i, ...

  9. Codeforces 1045A Last chance 网络流,线段树,线段树优化建图

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1045A.html 题目传送们 - CF1045A 题意 你有 $n$ 个炮,有 $m$ 个敌人,敌人排成一 ...

随机推荐

  1. 201621123033 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 为了让你的系统可以被多个用户通过网 ...

  2. python3 urllib和requests模块

    urllib模块是python自带的,直接调用就好,用法如下: 1 #处理get请求,不传data,则为get请求 2 import urllib 3 from urllib.request impo ...

  3. 【EasyNetQ】- 简介

    EasyNetQ是一个简单易用的,稳定的的RabbitMQ .NET API . 如果您只想尽快启动并运行,请转到“ 快速开始”指南. EasyNetQ的目标是提供一个库,使得在.NET中使用Rabb ...

  4. Shiro 的 HelloWorld

    密码文件 [users] zhang=123 wang=123 测试 package org.zln.hello; import org.apache.log4j.LogManager; import ...

  5. HDU 6201 transaction transaction transaction(拆点最长路)

    transaction transaction transaction Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 132768/1 ...

  6. Java代码管理工具SVN系列

    SVN是Subversion的简称,是一个开放源代码的版本控制系统,相较于RCS.CVS,它采用了分支管理系统,它的设计目标就是取代CVS.互联网上很多版本控制服务已从CVS迁移到Subversion ...

  7. Windows下安装Mycat

    Mycat 首先在安装Mycat之前,需要安装JDK1.7以上,可以在cmd环境下输入 java -version 查看本地安装的java版本 如果未安装或者版本在1.7以下,请重新安装. 安装JDK ...

  8. [05] call by sharing || 共享参数

    转: https://segmentfault.com/a/1190000005177386 众所周知,JavaScript中参数是按值传递的.与访问变量不同,基本类型和引用类型的参数在传递时都如同变 ...

  9. css中文本超出部分省略号代替

    p{ width: 100px; //设置p标签宽度 white-space: nowrap; //文本超出P标签宽度不换行,而是溢出 overflow: hidden; //文本超出P标签,超出部分 ...

  10. 小程序根据input输入,动态设置按钮的样式

    [需求]实现当手机号已填写和协议已勾选时,“立即登录”按钮变亮,按钮可点击:若有一个不满足,按钮置灰,不可点击:实现获取短信验证码,倒计时提示操作:对不满足要求内容进行toast弹窗提示. <v ...