sklearn.linear_model.LogisticRegression

LogisticRegression(penalty='l2', dual=False,
tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None,
random_state=None, solver='warn', max_iter=100,
multi_class='warn', verbose=0,
warm_start=False, n_jobs=None)
  • penalty:惩罚项,可为'l1' or 'l2''netton-cg', 'sag', 'lbfgs'只支持'l2'
  1. 'l1'正则化的损失函数不是连续可导的,而'netton-cg', 'sag', 'lbfgs'这三种算法需要损失函数的一阶或二阶连续可导。
  2. 调参时如果主要是为了解决过拟合,选择'l2'正则化就够了。若选择'l2'正则化还是过拟合,可考虑'l1'正则化。
  3. 若模型特征非常多,希望一些不重要的特征系数归零,从而让模型系数化的话,可使用'l1'正则化。
  • dual:选择目标函数为原始形式还是对偶形式。

将原始函数等价转化为一个新函数,该新函数称为对偶函数。对偶函数比原始函数更易于优化。

  • tol:优化算法停止的条件。当迭代前后的函数差值小于等于tol时就停止。
  • C:正则化系数。其越小,正则化越强。
  • fit_intercept:选择逻辑回归模型中是否会有常数项\(b\)。
  • intercept_scaling
  • class_weight:用于标示分类模型中各种类型的权重,{class_label: weight} or 'balanced'
  1. 'balanced':类库根据训练样本量来计算权重。某种类型的样本量越多,则权重越低。
  2. 若误分类代价很高,比如对合法用户和非法用户进行分类,可适当提高非法用户的权重。
  3. 样本高度失衡的。如合法用户9995条,非法用户5条,可选择'balanced',让类库自动提高非法用户样本的权重。
  • random_state:随机数种子。
  • solver:逻辑回归损失函数的优化方法。
  1. 'liblinear':使用坐标轴下降法来迭代优化损失函数。
  2. 'lbfgs':拟牛顿法的一种。利用损失函数二阶导数矩阵即海森矩阵来迭代优化损失函数。
  3. 'newton-cg':牛顿法的一种。同上。
  4. 'sag':随机平均梯度下降。每次迭代仅仅用一部分的样本来计算梯度,适合于样本数据多的时候。
  5. 多元逻辑回归有OvR(one-vs-rest)和MvM(many-vs-many)两种,而MvM一般比OvR分类相对准确一些。但是,'liblinear'只支持OvR。
  • max_iter:优化算法的迭代次数。
  • multi_class'ovr' or 'multinomial''multinomial'即为MvM。
  1. 若是二元逻辑回归,二者区别不大。
  2. 对于MvM,若模型有T类,每次在所有的T类样本里面选择两类样本出来,把所有输出为该两类的样本放在一起,进行二元回归,得到模型参数,一共需要T(T-1)/2次分类。
  • verbose:控制是否print训练过程。
  • warm_start
  • n_jobs:用cpu的几个核来跑程序。

sklearn.linear_model.LogisticRegressionCV

  • 相比于LogisticRegressionLogisticRegressionCV使用交叉验证来选择正则化系数C。

sklearn.linear_model.LogisticRegression参数说明的更多相关文章

  1. sklearn linear_model,svm,tree,naive bayes,ensemble

    sklearn linear_model,svm,tree,naive bayes,ensemble by iris dataset .caret, .dropup > .btn > .c ...

  2. sklearn.linear_model.LinearRegresion学习

    sklearn线性模型之线性回归 查看官网 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearR ...

  3. sklearn.linear_model.LinearRegression

    官网:http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html class ...

  4. sklearn.svm.SVC 参数说明

    原文地址:sklearn.svm.SVC 参数说明 ============================== 资源: sklearn官网+DOC 库下载GitHub =============== ...

  5. sklearn.neural_network.MLPClassifier参数说明

    目录 sklearn.neural_network.MLPClassifier sklearn.neural_network.MLPClassifier MLPClassifier(hidden_la ...

  6. sklearn.svm.SVC参数说明

    摘自:https://blog.csdn.net/szlcw1/article/details/52336824 本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方.(PS: l ...

  7. python sklearn.linear_model.LinearRegression.score

    score(self, X, y, sample_weight=None) 作用:返回该次预测的系数R2     其中R2 =(1-u/v).u=((y_true - y_pred) ** 2).su ...

  8. sklearn学习2-----LogisticsRegression

    1.官网地址: http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.htm ...

  9. 【导包】使用Sklearn构建Logistic回归分类器

    官方英文文档地址:http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.LogisticRegression.html# ...

随机推荐

  1. [八]基础数据类型之Double详解

    Double 基本数据类型double  的包装类 Double 类型的对象包含一个 double 类型的字段   属性简介 用来以二进制补码形式表示 double 值的比特位数 public sta ...

  2. Redis in python

    什么是Redis 数据库类型分为两种,关系型和非关系型,Redis是一个非常重要的非关系型数据库. 既然是数据库,就是存储数据的一个空间,或者说是一个软件,非关系就是不再按照一对一多对多等结构进行外键 ...

  3. DSAPI 添加删除程序到Windows启动

    使用DSAPI.dll中文件类里现成的功能,将使你可以快速高效地实现将程序加入Windows启动项或从启动项中删除. 简单也是非常地简单,但由于是比较独立的功能,所以单独发表为整个篇幅.  DSAPI ...

  4. Android安全——加固原理

    一.前言 今天来介绍一下Android中的如何对Apk进行加固的原理.现阶段.我们知道Android中的反编译工作越来越让人操作熟练,我们辛苦的开发出一个apk,结果被人反编译了,那心情真心不舒服.虽 ...

  5. Spring笔记04_AOP注解开发_模板_事务

    目录 1. Spring基于AspectJ的注解的AOP开发 1. 1 SpringAOP的注解入门 1.2 Spring的AOP的注解通知类型 1.2.1 @Before:前置通知 1.2.2 @A ...

  6. bitset中_Find_first()与_Find_next()函数

    bitset中_Find_first()与_Find_next()函数 很有趣但是没怎么有用的两个函数. _Find_fisrt就是找到从低位到高位第一个1的位置 #include<bits/s ...

  7. 智能化CRM客户关系管理系统介绍一

    智能化CRM客户关系管理系统介绍一 CRM客户关系管理的定义是:企业为提高核心竞争力,利用相应的信息技术以及互联网技术来协调企业与顾客间在销售.营销和服务上的交互,从而提升其管理方式,向客户提供创新式 ...

  8. IBGP默认的TTL值为255

    结论: 1.IBGP默认的TTL值为255 组网图: 抓包内容: 1.在AR1和AR2之间抓包,只显示BGP包,显示内容如下:

  9. Android远程桌面助手之系统兼容篇

    Android远程桌面助手理论上兼容Android4.4至Android8.1之间所有的原生安卓系统,其他第三方ROM,如MIUI.Flyme.EMUI和Smartisan OS等也都陆续测试过,目前 ...

  10. 总结XSS与CSRF两种跨站攻击

    XSS:跨站脚本(Cross-site scripting),实际应是"CSS",但由于和层叠样式表CSS名称冲突,故改为"XSS" CSRF:跨站请求伪造(C ...