[模板] 动态树/LCT
简介
LCT是一种数据结构, 可以维护树的动态加边, 删边, 维护链上信息(满足结合律), 单次操作时间复杂度 \(O(\log n)\).(不会证)
思想类似树链剖分, 因为splay可以换根, 用splay维护重链, splay的中序遍历即为链按深度从小到大遍历的结果.
操作
注意区分splay和整棵树的区别, splay根和树根的区别.
\(Access(p)\) 操作指的是将p与根放在同一棵splay中.
\(MakeRoot(p)\) 操作指的是将p变为它所在树(而不是splay)的根. 由于维护的是链上信息, 这不会对答案产生影响.
\(FindRoot(p)\) 操作指的是求p所在树(而不是splay)的根.
\(Link(x,y)\) 操作指的是如果p与q不在同一棵树中, 那么连边 \((x,y)\).
\(Cut(x,y)\) 操作指的是如果p与q有边相连, 那么连边 \((x,y)\).
其中, 'p与q有边相连' 等价于同时满足:
- p,q在同一棵树中.
- p,q深度相差1.(splay中p,q中序遍历时相邻)
\(Split(x,y)\) 操作指的是取出 \((x,y)\) 这个链, 并放在一棵splay中.
具体实现见代码.
应用
- 动态树(代替树链剖分)
- 动态最小生成树
- 维护子树信息(AAA树)
- 维护并查集(e.g. 可持久化并查集)
- 优化dinic(据tarjan论文)(怕不是会写死)
Code
const int nsz=3e5+50;
int n,val[nsz];
struct tlct{
struct tnd{int ch[2],fa,sum,rv;}tree[nsz];
#define ls(p) tree[p].ch[0]
#define rs(p) tree[p].ch[1]
#define fa(p) tree[p].fa
#define dir(p) (rs(fa(p))==p)
bool isrt(int p){return ls(fa(p))!=p&&rs(fa(p))!=p;}//splay rt
void rev(int p){swap(ls(p),rs(p));tree[p].rv^=1;}
void pu(int p){
tree[p].sum=tree[ls(p)].sum^val[p]^tree[rs(p)].sum;
}
void pd(int p){
if(tree[p].rv==0)return;
if(ls(p))rev(ls(p));
if(rs(p))rev(rs(p));
tree[p].rv=0;
}
void pdt(int p){//push down whole splay; from top to bottom
if(!isrt(p))pdt(fa(p));
pd(p);
}
void rotate(int p){//fa(p) should exist
int x=fa(p),y=fa(x),dir1=dir(p),dir2=dir(x),z=tree[p].ch[dir1^1];
if(!isrt(x))tree[y].ch[dir2]=p;fa(p)=y;
tree[p].ch[dir1^1]=x;fa(x)=p;
tree[x].ch[dir1]=z;if(z)fa(z)=x;
pu(x),pu(p);//can't swap
}
void splay(int p){
pdt(p);
while(!isrt(p)){
if(!isrt(fa(p)))rotate(dir(p)==dir(fa(p))?fa(p):p);
rotate(p);
}
}
void access(int p){
for(int y=0;p;y=p,p=fa(p)){
splay(p),rs(p)=y;
pu(p);
}
}
void makert(int p){//p -> tree rt & splay rt
access(p),splay(p);
rev(p);
}
int findrt(int p){//find tree rt; p -> splay rt
access(p),splay(p);
while(ls(p))pd(p),p=ls(p);
splay(p); //不加会tle... 不知道为什么
return p;
}
bool iscon(int x,int y){return findrt(x)==findrt(y);}
void split(int x,int y){//x -> tree rt; y -> splay rt
makert(x);
access(y);
splay(y);
}
void link(int x,int y){
makert(x);
if(findrt(y)!=x)fa(x)=y;
}
void cut(int x,int y){
split(x,y);
if(fa(x)==y&&rs(x)==0)
fa(x)=ls(y)=0,pu(y);
}
void pr(){
rep(i,1,n)printf("nd=%d fa=%d ls=%d rs=%d sum=%d rv=%d\n",i,fa(i),ls(i),rs(i),tree[i].sum,tree[i].rv);
}
}lct;
//init
rep(i,1,n)tree[i].sum=val[i];
//query a chain
lct.split(b,c);
ans=lct.tree[c].sum;
//modify one point
lct.makert(b);
val[b]=c;
lct.pu(b);
[模板] 动态树/LCT的更多相关文章
- hdu 5002 (动态树lct)
Tree Time Limit: 16000/8000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 5398 动态树LCT
GCD Tree Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- bzoj2049-洞穴勘测(动态树lct模板题)
Description 辉辉热衷于洞穴勘测.某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好 ...
- 动态树LCT(Link-cut-tree)总结+模板题+各种题目
一.理解LCT的工作原理 先看一道例题: 让你维护一棵给定的树,需要支持下面两种操作: Change x val: 令x点的点权变为val Query x y: 计算x,y之间的唯一的最短路径的点 ...
- 动态树LCT小结
最开始看动态树不知道找了多少资料,总感觉不能完全理解.但其实理解了就是那么一回事...动态树在某种意思上来说跟树链剖分很相似,都是为了解决序列问题,树链剖分由于树的形态是不变的,所以可以通过预处理节点 ...
- SPOJ OTOCI 动态树 LCT
SPOJ OTOCI 裸的动态树问题. 回顾一下我们对树的认识. 最初,它是一个连通的无向的无环的图,然后我们发现由一个根出发进行BFS 会出现层次分明的树状图形. 然后根据树的递归和层次性质,我们得 ...
- HDU 4718 The LCIS on the Tree (动态树LCT)
The LCIS on the Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Oth ...
- BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 (动态树LCT)
2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2843 Solved: 1519[Submi ...
- HDU 5002 Tree(动态树LCT)(2014 ACM/ICPC Asia Regional Anshan Online)
Problem Description You are given a tree with N nodes which are numbered by integers 1..N. Each node ...
随机推荐
- 快速使用CSS Grid布局,实现响应式设计
常用Grid布局属性介绍 下面从一个简单Grid布局例子说起. CSS Grid 布局由两个核心组成部分是 wrapper(父元素)和 items(子元素). wrapper 是实际的 grid(网格 ...
- Dynamics 365新引入了多选选项集类型字段
本人微信和易信公众号:微软动态CRM专家罗勇 ,回复276或者20180630可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me ...
- linux下磁盘存储空间不足
把自己平时遇到的问题分享给大家 Question:linux系统Ubuntu下面有一个Trash,当我们删除文件后,清空Trash,过一段时间发现磁盘空间不足 Answer:其实我们并没有真正的删除文 ...
- Spring Boot 相关
SpringBoot工程 参数解析 HTTP Method Request / Response / Session Error/重定向 Logger IoC AOP/Aspect 1:Sprin ...
- Vue一个案例引发的递归组件的使用
今天我们继续使用 Vue 的撸我们的实战项目,只有在实战中我们才会领悟更多,光纸上谈兵然并卵,继上篇我们的<Vue一个案例引发的动态组件与全局事件绑定总结> 之后,今天来聊一聊我们如何在项 ...
- Hasse神舟笔记本卡logo解决,刷BIOS方法,教你修复神船
我的电脑是神舟战神K660E i7 d7的,前两天装Windows10,Ubuntu,MAC OS Mojave,PE 一堆操作,使用bootice重建uefi引导,结果在前几天,我删了一个重复的ue ...
- 云服务器挂载/dev/vdb1磁盘
1.首先检查是否有一块硬盘还未被挂载 2.如图所示,vdb还未被使用,开始分配它吧 [root@localhost ~]# fdisk /dev/vdb Command (m for help): n ...
- Python开发【前端篇】HTML5+CSS3
CSS权重 CSS权重指的是样式的优先级,有两条或多条样式作用于一个元素,权重高的那条样式对元素起作用,权重相同的,后写的样式会覆盖前面写的样式. 权重的等级 可以把样式的应用方式分为几个等级,按照等 ...
- Android图片选择---MultiImageSelector的使用
Github地址:https://github.com/lovetuzitong/MultiImageSelector MultiImageSelector主要是图片选择功能. AndroidStud ...
- 微信小程序测试
1.连接真机,微信已经登录过了 2.代码: 3.appium自带的识别工具 4.设置工具连接设备的方式 参考资料: https://www.cnblogs.com/yoyoketang/p/91449 ...