codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图
1 second
256 megabytes
standard input
standard output
After Vitaly was expelled from the university, he became interested in the graph theory.
Vitaly especially liked the cycles of an odd length in which each vertex occurs at most once.
Vitaly was wondering how to solve the following problem. You are given an undirected graph consisting of n vertices and m edges, not necessarily connected, without parallel edges and loops. You need to find t — the minimum number of edges that must be added to the given graph in order to form a simple cycle of an odd length, consisting of more than one vertex. Moreover, he must find w — the number of ways to add t edges in order to form a cycle of an odd length (consisting of more than one vertex). It is prohibited to add loops or parallel edges.
Two ways to add edges to the graph are considered equal if they have the same sets of added edges.
Since Vitaly does not study at the university, he asked you to help him with this task.
The first line of the input contains two integers n and m ( — the number of vertices in the graph and the number of edges in the graph.
Next m lines contain the descriptions of the edges of the graph, one edge per line. Each edge is given by a pair of integers ai, bi (1 ≤ ai, bi ≤ n) — the vertices that are connected by the i-th edge. All numbers in the lines are separated by a single space.
It is guaranteed that the given graph doesn't contain any loops and parallel edges. The graph isn't necessarily connected.
Print in the first line of the output two space-separated integers t and w — the minimum number of edges that should be added to the graph to form a simple cycle of an odd length consisting of more than one vertex where each vertex occurs at most once, and the number of ways to do this.
4 4
1 2
1 3
4 2
4 3
1 2
3 3
1 2
2 3
3 1
0 1
3 0
3 1
The simple cycle is a cycle that doesn't contain any vertex twice.
题意:
给出一个图,无重边和自环
设t为要加的最小的边数,使得图有奇数个节点的环,环中的每一个节点只经过一次
设w为加满足条件的t条边的方案数
输出t w
思路:
考虑这个图的每一个节点的度deg
1.最大的度 = 0,说明图没有边,图的最长路为0,那么
t = 3,w = C(n,3)
2.最大的度 = 1,说明图的最长路为1,那么
t = 2,w = m * (n - 2)
3.最大的度 > 1,说明图的最长路>1,那么
(1).如果原图有奇数个节点的环,那么
t = 0,w = 1
(2).如果原图没有奇数个节点的环,那么
t = 1,w = ?
如何判断原图有没有奇数个节点的环呢?
我们发现,
如果原图没有奇数个节点的环,那么原图就是一个2分图
如果原图有奇数个节点的环,那么原图就不是一个2分图
所以用染色法就可以知道原图是不是一个2分图啦
那上面讨论中的?的值是多少呢?
当原图是一个2分图的时候,
对于图的每一个联通分量,我们把这个联通分量的节点分成了2部分,
分别有x,y个节点,那么ans += C(x,2) + C(y,2)
注意,
是对每一个联通分量,分别得到x,y,然后更新ans
而不是对整个图求x,y
因为对于我们选择加入的这一条边的2个端点,一定是要在同一个联通分量中的
代码:
//File Name: cf557D.cpp
//Author: long
//Mail: 736726758@qq.com
//Created Time: 2016年07月08日 星期五 20时38分29秒 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <queue> #define LL long long using namespace std; const int MAXN = + ; int deg[MAXN];
int is[MAXN];
bool flag;
queue<int> que; struct Edge{
int to,next;
}edge[MAXN << ];
int head[MAXN],tot; void init(){
memset(head,-,sizeof head);
tot = ;
memset(deg,,sizeof deg);
} void addedge(int u,int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].to = u;
edge[tot].next = head[v];
head[v] = tot++;
} void dfs(int p,int u,int x){
is[u] = x;
que.push(u);
for(int i=head[u];~i;i=edge[i].next){
int v = edge[i].to;
if(v == p)
continue;
if(is[v] == x){
flag = false;
return ;
}
else if(is[v] == -)
dfs(u,v,x ^ );
}
} void solve(int n,int m){
LL ans;
int ma = -;
for(int i=;i<=n;i++)
ma = max(deg[i],ma);
if(ma == ){
ans = (LL)n * (n - ) * (n - ) / ;
cout << "3 " << ans << endl;
}
else if(ma == ){
ans = (LL)m * (n - );
cout << "2 " << ans << endl;
}
else{
ans = ;
memset(is,-,sizeof is);
flag = true;
while(!que.empty())
que.pop();
for(int i=;i<=n;i++){
if(is[i] == -){
dfs(-,i,);
int x = ,y = , u;
while(!que.empty()){
u = que.front();
que.pop();
if(is[u] == ) x++;
else y++;
}
ans += (LL)x * (x - ) / + (LL)y * (y - ) / ;
}
}
if(!flag)
cout << "0 1" << endl;
else
cout << "1 " << ans << endl;
}
return ;
} int main(){
int n,m;
while(~scanf("%d %d",&n,&m)){
init();
for(int i=,u,v;i<m;i++){
scanf("%d %d",&u,&v);
addedge(u,v);
deg[u]++;
deg[v]++;
}
solve(n,m);
}
return ;
}
codeforces 557 D. Vitaly and Cycle 组合数学 + 判断二分图的更多相关文章
- 【34.57%】【codeforces 557D】Vitaly and Cycle
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 图论
D. Vitaly and Cycle Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/557/p ...
- CodeForces - 557D Vitaly and Cycle(二分图)
Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环
题目链接: 点这里 题目 D. Vitaly and Cycle time limit per test1 second memory limit per test256 megabytes inpu ...
- Codeforces Round #311 (Div. 2) D - Vitaly and Cycle
D. Vitaly and Cycle time limit per test 1 second memory limit per test 256 megabytes input standard ...
- HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)
Divide Groups Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- Java实现 LeetCode 785 判断二分图(分析题)
785. 判断二分图 给定一个无向图graph,当这个图为二分图时返回true. 如果我们能将一个图的节点集合分割成两个独立的子集A和B,并使图中的每一条边的两个节点一个来自A集合,一个来自B集合,我 ...
- codeforces 557D Vitaly and Cycle
题意简述 给定一个图 求至少添加多少条边使得它存在奇环 并求出添加的方案数 (注意不考虑自环) ---------------------------------------------------- ...
- Codeforces Round #311 (Div. 2) D - Vitaly and Cycle(二分图染色应用)
http://www.cnblogs.com/wenruo/p/4959509.html 给一个图(不一定是连通图,无重边和自环),求练成一个长度为奇数的环最小需要加几条边,和加最少边的方案数. 很容 ...
随机推荐
- kuangbin_ShortPath L (POJ 2502)
dij部分还是跟模板差不多的 但是这题的难点是处理输入 或者说理解题意 事实上每个点之间都是可以走的......WA了好几发就因为没意识到同一条路线上的各个站点之间居然也可以走得比车子快.... PS ...
- HTTPS-HSTS协议(强制客户端使用HTTPS与服务器创建连接)
HSTS(HTTP Strict Transport Security)国际互联网工程组织IETE正在推行一种新的Web安全协议 HSTS的作用是强制客户端(如浏览器)使用HTTPS与服务器创建连接. ...
- UserDefault的使用,保存小数据到本地-iOS
//保持到本地数据 NSArray *array=@[@"234",@"sdfe"]; NSUserDefaults *userDefault=[NSUserD ...
- BEA-WEBLOGIC ---http://www.beansoft.biz/weblogic/docs92/index.html
WebLogic Home 英文对照 发行信息 站点地图 Installation Guide 新增功能 已知和已解决的问题 Upgrade Guide Installing Ma ...
- vb6动态创建webbrowser
Option Explicit Private WithEvents IE As VBControlExtender Private Sub Command1_Click() Dim IE Set I ...
- hydra
转:http://www.cnblogs.com/patf/p/3142564.html 1.yum -y install openssl-devel pcre-devel ncpfs-devel p ...
- eclipse svn subclipse下载地址
http://subclipse.tigris.org/servlets/ProjectDocumentList?folderID=2240 Eclipse 3.x Subclipse release ...
- Hive(五):hive与hbase整合
配置 hive 与 hbase 整合的目的是利用 HQL 语法实现对 hbase 数据库的增删改查操作,基本原理就是利用两者本身对外的API接口互相进行通信,两者通信主要是依靠hive_hbase-h ...
- jquery.find()
http://www.365mini.com/page/jquery-find.htm
- openstack(liberty):部署实验平台(三,简单版本软件安装 之cinder,swift)
今天这里追加存储相关的部署,主要是Block和Object,为了看到效果,简单的部署在单节点上,即Block一个节点,Object对应一个节点. 读者可能会觉得我这个图和之前的两个post有点点不同, ...