UVA 11383 Golden Tiger Claw 金虎爪(KM算法)
题意:
给一个n*n的矩阵,每个格子中有正整数w[i][j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立。先输row,再输出col,再输出全部总和(总和应尽量小)。
思路:
本题与匹配无关,但可以用KM算法解决。
KM算法中的顶标就是保持了Lx[i]+ly[j]>=g[i][j]再求最大权和匹配的,但这个最大权和并没有关系。我们可以将row[i]看成一个男的,col[i]看成一个女的,这样男女的总数就相等。
一般来说,Lx[i]或Ly[i]仅需要取该行/列中最大的那个数即可保证满足要求,但是这样太大了,可以通过调整来使得总和更小。而KM算法的过程就是一个调整的过程,每一对匹配的男女的那条边的权值就会满足等号 w[i][j]=row[i]+col[j],至少需要一个来满足等号,这样才能保证row[i]+col[j]是达到最小的,即从j列看,col[j]满足条件且最小,从i行看,row[i]满足条件且最小。这刚好与KM算法求最大权和一样。
#include <bits/stdc++.h>
#define LL long LONG_LONG_MAX
#define INF 0x7f7f7f7f
#define LL long long
using namespace std;
const int N=; int grid[N][N], girl[N];
int Lx[N], Ly[N], slack[N];
bool S[N], T[N];
int n; bool DFS(int x)
{
S[x]=true;
for(int i=; i<=n; i++)
{
if(T[i]) continue;
int tmp=Lx[x]+Ly[i]-grid[x][i];
if(tmp==)
{
T[i]=true;
if(girl[i]== || DFS(girl[i]))
{
girl[i]=x;
return true;
}
}
else if(tmp<slack[i])
slack[i]=tmp;
}
return false;
} int KM()
{
memset(girl, , sizeof(girl));
memset(Lx, , sizeof(Lx));
memset(Ly, , sizeof(Ly));
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
Lx[i]=max(Lx[i], grid[i][j]); for(int i=; i<=n; i++) //对于每个树
{
for(int j=; j<=n; j++) slack[j]=INF;
while()
{
memset(S, , sizeof(S));
memset(T, , sizeof(T));
if( DFS(i) ) break; //找到匹配的蚂蚁 int d=INF;
for(int j=; j<=n; j++) //找最小D
{
if(!T[j] && d>slack[j])
d=slack[j];
} for(int j=; j<=n; j++) //更新树
{
if(S[j])
Lx[j]-=d;
} for(int j=; j<=n; j++) //更新蚂蚁
{
if(T[j]) Ly[j]+=d;
else slack[j]-=d;
}
}
}
int sum=;
for(int i=; i<=n; i++) sum+=Lx[i]+Ly[i];
return sum;
} int main()
{
freopen("input.txt", "r", stdin);
while(~scanf("%d",&n))
{
memset(grid, , sizeof(grid));
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
scanf("%d",&grid[i][j]); int ans=KM();
printf("%d", Lx[]);//值得注意的输出格式。
for(int i=; i<=n; i++) printf(" %d", Lx[i]);
printf("\n");
printf("%d",Ly[]);
for(int i=; i<=n; i++) printf(" %d", Ly[i]);
printf("\n");
printf("%d\n", ans);
}
return ;
}
AC代码
UVA 11383 Golden Tiger Claw 金虎爪(KM算法)的更多相关文章
- UVA 11383 - Golden Tiger Claw(二分图完美匹配扩展)
UVA 11383 - Golden Tiger Claw 题目链接 题意:给定每列和每行的和,给定一个矩阵,要求每一个格子(x, y)的值小于row(i) + col(j),求一种方案,而且全部行列 ...
- uva11383 Golden Tiger Claw 深入理解km算法
/** 题目: uva11383 Golden Tiger Claw 深入理解km算法 链接:https://vjudge.net/problem/UVA-11383 题意:lv 思路:lrj训练指南 ...
- 【KM算法】UVA 11383 Golden Tiger Claw
题目大意 给你一个\(n×n\)的矩阵G,每个位置有一个权,求两个一维数组\(row\)和\(col\),使\(row[i] + col[j]\ge G[i][j]\),并且\(∑row+∑col\) ...
- UVA 11383 Golden Tiger Claw 题解
题目 --> 题解 其实就是一个KM的板子 KM算法在进行中, 需要满足两个点的顶标值之和大于等于两点之间的边权, 所以进行一次KM即可. KM之后, 顶标之和就是最小的.因为如果不是最小的,就 ...
- Uva - 11383 - Golden Tiger Claw
题意:一个N*N的矩阵,第i行第j列的元素大小为w[i][j],每行求一个数row[i],每列求一个数col[j],使得row[i] + col[j] >= w[i][j],且所有的row[]与 ...
- UVA 11383 Golden Tiger Claw(最佳二分图完美匹配)
题意:在一个N*N的方格中,各有一个整数w(i,j),现在要求给每行构造row(i),给每列构造col(j),使得任意w(i,j)<=row(i)+col(j),输出row(i)与col(j)之 ...
- 【UVA11383】 Golden Tiger Claw 【二分图KM算法(板子)】
题目 题目传送门:https://www.luogu.com.cn/problem/UVA11383 分析 最近刚刚学了二分图,然后来了一个这样的题,看完题意之后,稍微想一想就能想出来是一个二分图,然 ...
- 【UVA 11383】 Golden Tiger Claw (KM算法副产物)
Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...
- UVA11383 Golden Tiger Claw
题目 UVA11383 Golden Tiger Claw 做法 \(KM\)好题啊,满足所有边\(l(x)+l(y)≥w(x,y)\)(个人理解,如不对请及时留言),这样能满足\(\sum\limi ...
随机推荐
- HDU 4148 Length of S(n)(字符串)
题目 字符串处理 题意要猜,解析见代码: /* 这题每个S(n)是描述S(n-1)值 例如: S(1)=1; S(2)=11;即描述S(1)有1个1=11 S(3)=21;即描述S(2)有2个1=21 ...
- HDU 1098 Ignatius's puzzle(数学归纳)
以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...
- POJ 2140
#include<iostream> #include<stdio.h> using namespace std; int main() { int num; int i; i ...
- spring_150803_component
实体类: package com.spring.model; public class DogPet { private int id; private String name; private in ...
- android-non-ui-ui-thread-communications-part-5-5
This is the last post in my series regarding Android thread communications. Parts 1 through 4 are l ...
- lintcode : 跳跃游戏
跳跃游戏 给出一个非负整数数组,你最初定位在数组的第一个位置. 数组中的每个元素代表你在那个位置可以跳跃的最大长度. 判断你是否能到达数组的最后一个位置. 样例 A = [2,3,1,1,4],返回 ...
- 540B :School Marks
题目链接 题意: 输入: 第一个: n k p x y 第二行:k个数 n: 数的数量 k:n个数中已经知道的k个数 p:n个数取值的上界,下界是1 x:n个数的和的上界x y:n个数的中位数至少是 ...
- linux 操作系统下c语言编程入门
2)Linux程序设计入门--进程介绍 3)Linux程序设计入门--文件操作 4)Linux程序设计入门--时间概念 5)Linux程序设计入门--信号处理 6)Linux程序设计入门--消息管理 ...
- iOS 动态特性和RunTime
过去的几年中涌现了大量的Objective-C开发者.有些是从动态语言转过来的,比如Ruby或Python,有些是从强类型语言转过来的,如Java或C#,当然也有直接以Objective-C作为入门语 ...
- Centos 用户组管理
#组帐号管理 linux 组管理 =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--= 1.组的分类 私用组:只能包含一个用 ...