题目连接

http://poj.org/problem?id=1789

Truck History

Description

Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks are used for vegetable delivery, other for furniture, or for bricks. The company has its own code describing each type of a truck. The code is simply a string of exactly seven lowercase letters (each letter on each position has a very special meaning but that is unimportant for this task). At the beginning of company's history, just a single truck type was used but later other types were derived from it, then from the new types another types were derived, and so on.

Today, ACM is rich enough to pay historians to study its history. One thing historians tried to find out is so called derivation plan -- i.e. how the truck types were derived. They defined the distance of truck types as the number of positions with different letters in truck type codes. They also assumed that each truck type was derived from exactly one other truck type (except for the first truck type which was not derived from any other type). The quality of a derivation plan was then defined as

1/Σ(to,td)d(to,td)

where the sum goes over all pairs of types in the derivation plan such that to is the original type and td the type derived from it and d(to,td) is the distance of the types. 
Since historians failed, you are to write a program to help them. Given the codes of truck types, your program should find the highest possible quality of a derivation plan.

Input

The input consists of several test cases. Each test case begins with a line containing the number of truck types, N, 2 <= N <= 2 000. Each of the following N lines of input contains one truck type code (a string of seven lowercase letters). You may assume that the codes uniquely describe the trucks, i.e., no two of these N lines are the same. The input is terminated with zero at the place of number of truck types.

Output

For each test case, your program should output the text "The highest possible quality is 1/Q.", where 1/Q is the quality of the best derivation plan.

Sample Input

4
aaaaaaa
baaaaaa
abaaaaa
aabaaaa
0

Sample Output

The highest possible quality is 1/3.

堆优化的Prim最小生成树算法。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using std::map;
using std::min;
using std::find;
using std::pair;
using std::vector;
using std::multimap;
using std::priority_queue;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 2100;
const int INF = 0x3f3f3f3f;
struct P {
int w, v;
P(int i = 0, int j = 0) :w(i), v(j) {}
inline bool operator<(const P &x) const {
return w > x.w;
}
};
struct Prim {
typedef char State[8];
struct edge { int to, w, next; }G[N * N];
State st[N];
bool vis[N];
int tot, head[N], mincost[N];
inline void init() {
tot = 0, cls(vis, false), cls(head, -1), cls(mincost, 0x3f);
}
inline void add_edge(int u, int v, int w) {
G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
}
inline int calc(int i, int j) {
int res = 0;
rep(k, 7) {
if(st[i][k] != st[j][k]) res++;
}
return res;
}
inline void built(int n) {
rep(i, n) scanf("%s", st[i]);
rep(i, n) {
rep(j, n) {
int ret = calc(i, j);
if(i == j) continue;
add_edge(i + 1, j + 1, ret);
}
}
}
inline void prim(int s) {
int ans = 0;
priority_queue<P> q;
q.push(P(0, s));
for(int i = head[s]; ~i; i = G[i].next) {
mincost[G[i].to] = G[i].w;
q.push(P(G[i].w, G[i].to));
}
mincost[s] = 0, vis[s] = true;
while(!q.empty()) {
P t = q.top(); q.pop();
int u = t.v;
if(vis[u]) continue;
vis[u] = true;
ans += t.w;
for(int i = head[u]; ~i; i = G[i].next) {
int &d = mincost[G[i].to];
if(d > G[i].w && !vis[G[i].to]) {
d = G[i].w;
q.push(P(G[i].w, G[i].to));
}
}
}
printf("The highest possible quality is 1/%d.\n", ans);
}
inline void solve(int n) {
init(), built(n), prim(1);
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int n;
while(~scanf("%d", &n), n) {
go.solve(n);
}
return 0;
}

poj 1789 Truck History的更多相关文章

  1. Kuskal/Prim POJ 1789 Truck History

    题目传送门 题意:给出n个长度为7的字符串,一个字符串到另一个的距离为不同的字符数,问所有连通的最小代价是多少 分析:Kuskal/Prim: 先用并查集做,简单好写,然而效率并不高,稠密图应该用Pr ...

  2. POJ 1789 -- Truck History(Prim)

     POJ 1789 -- Truck History Prim求分母的最小.即求最小生成树 #include<iostream> #include<cstring> #incl ...

  3. POJ 1789 Truck History【最小生成树简单应用】

    链接: http://poj.org/problem?id=1789 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

  4. POJ 1789 Truck History (Kruskal)

    题目链接:POJ 1789 Description Advanced Cargo Movement, Ltd. uses trucks of different types. Some trucks ...

  5. poj 1789 Truck History 最小生成树

    点击打开链接 Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 15235   Accepted:  ...

  6. POJ 1789 Truck History (最小生成树)

    Truck History 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/E Description Advanced Carg ...

  7. poj 1789 Truck History【最小生成树prime】

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21518   Accepted: 8367 De ...

  8. poj 1789 Truck History 最小生成树 prim 难度:0

    Truck History Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 19122   Accepted: 7366 De ...

  9. POJ 1789 Truck History (Kruskal 最小生成树)

    题目链接:http://poj.org/problem?id=1789 Advanced Cargo Movement, Ltd. uses trucks of different types. So ...

随机推荐

  1. Laxcus大数据管理系统2.0(9)- 第七章 分布任务组件

    第七章 分布任务组件 Laxcus 2.0版本的分布任务组件,是在1.x版本的基础上,重新整合中间件和分布计算技术,按照新增加的功能,设计的一套新的.分布状态下运行的数据计算组件和数据构建组件,以及依 ...

  2. Linux操作系统下三种配置环境变量的方法——转载

    来源:赛迪网 作者:millio       现在使用linux的朋友越来越多了,在linux下做开发首先就是需要配置环境变量,下面以配置java环境变量为例介绍三种配置环境变量的方法. 1.修改/e ...

  3. mysql中case用法

    如上所述,使用case的子句将作为一个字段,方便起见,可以用别名表示.其中,when是case的条件,值为then的表达式值.   参考: http://www.owe-love.com/myspac ...

  4. 火箭18号秀光膀为父母割草(FW)

    火箭18号秀光膀为父母割草 一夜致富不改本色 来源:新浪 2015年06月30日 分享到: 更多 收藏 分享 被浏览5次   <ignore_js_op id="r_article_i ...

  5. 【EF 3】浅谈ADO数据模型生成串(一):csdl,ssdl,msl分析

    导读:这段经历,真的是难以忘怀.恨得我牙痒痒,就一个字符串拼接,前前后后尽然报了不下30个错.有的错很快就能调出来,有的错调一天.两天,是真的可以的.最终总结了一下,这些错很大一部分原因是对于EF生成 ...

  6. jquery selector 使用方法

    <select class="selector"></select> 1 设置value为pxx的项选中 $(".selector"). ...

  7. javascript 同步加载与异步加载

    HTML 4.01 的script属性 charset: 可选.指定src引入代码的字符集,大多数浏览器忽略该值. defer: boolean, 可选.延迟脚本执行,相当于将script标签放入页面 ...

  8. UnityVS 2013的使用

    如果已安装旧版,先卸载,然后在安装新版本: 安装完毕后,打开Unity,在Build Settings中设置: Import the Visual Studio Tools Unity package ...

  9. PHP:PHP页面编码问题(转载)

    MySQL数据库编码.html页面编码.PHP或html文件本身编码要全部一致. 1.MySQL数据库编码:建立数据库时指定编码(如gbk_chinese_ci),建立数据表.建立字段.插入数据时不要 ...

  10. SQL笔记-第一章,数据库入门

    DBMS的分类DB2.Oracle.Microsoft SQL Server.Sybase SQLServer.Informix.MySQL数据库的结构元素库 database表 table列 col ...