Barricade

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 604    Accepted Submission(s): 172

Problem Description
The empire is under attack again. The general of empire is planning to defend his castle. The land can be seen as N towns and M roads, and each road has the same length and connects two towns. The town numbered 1 is where general's castle is located, and the town numbered N
is where the enemies are staying. The general supposes that the enemies
would choose a shortest path. He knows his army is not ready to fight
and he needs more time. Consequently he decides to put some barricades
on some roads to slow down his enemies. Now, he asks you to find a way
to set these barricades to make sure the enemies would meet at least one
of them. Moreover, the barricade on the i-th road requires wi units of wood. Because of lacking resources, you need to use as less wood as possible.
 
Input
The first line of input contains an integer t, then t test cases follow.
For each test case, in the first line there are two integers N(N≤1000) and M(M≤10000).
The i-the line of the next M lines describes the i-th edge with three integers u,v and w where 0≤w≤1000 denoting an edge between u and v of barricade cost w.
 
Output
For each test cases, output the minimum wood cost.
 
Sample Input
1
4 4
1 2 1
2 4 2
3 1 3
4 3 4
 
Sample Output
4
【分析】给你一个无向图,现有敌人要从n点走到1点且他只走最短路(每条路长度一样)。为了阻止敌人到达1点,要求在某些路上设置障碍,使得敌人最少能遇到一个障碍。
 其实就是在最短路上跑网络流,因为最小割就是最大流。一开始一直超时,后来问的学长才知道我的Dinic板子有问题,没有当前弧优化,然后改了一下,就过了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
struct Node
{
int v,w;
Node(int vv,int ww):v(vv),w(ww){};
};
vector<Node>e[N];
int s,t,n,m,vs,vt;
int d[N];
int vis[N];
void spfa()
{
memset(vis,,sizeof(vis));
for(int i = ;i<=n;i++)
d[i]=inf;
d[s]=;
queue<int>q;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u]=;
for(int i = ;i<e[u].size();i++)
{
int v = e[u][i].v;
if(d[v]>d[u]+)
{
d[v]=d[u]+;
if(!vis[v])
q.push(v);
vis[v]=;
}
}
}
} struct Edge
{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic
{
int s,t;
vector<Edge>edges;
vector<int> G[N];
bool vis[N];
int d[N];
int cur[N];
void init()
{
for (int i=;i<=n+;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));
int mm=edges.size();
G[from].push_back(mm-);
G[to].push_back(mm-);
}
bool BFS()
{
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while (!q.empty())
{
int x = q.front();q.pop();
for (int i = ;i<G[x].size();i++)
{
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to]=;
d[e.to] = d[x]+;
q.push(e.to);
}
}
}
return vis[t];
} int DFS(int x,int a)
{
if (x==t || a==)
return a;
int flow = ,f;
for(int &i=cur[x];i<G[x].size();i++)
{
Edge &e = edges[G[x][i]];
if (d[x]+ == d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>)
{
e.flow+=f;
edges[G[x][i]^].flow-=f;
flow+=f;
a-=f;
if (a==)
break;
}
}
return flow;
} int Maxflow(int s,int t)
{
this->s=s;
this->t=t;
int flow = ;
while (BFS())
{
memset(cur,,sizeof(cur));
flow+=DFS(s,inf);
}
return flow;
}
}dc; int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i = ;i<=n;i++)
e[i].clear();
for(int i = ;i<=m;i++)
{
int u,v,di;
scanf("%d%d%d",&u,&v,&di);
e[u].push_back(Node(v,di));
e[v].push_back(Node(u,di));
}
s=,t=n;
spfa();
dc.init();
for(int i = ;i<=n;i++)
for(int j = ;j<e[i].size();j++)
if(d[e[i][j].v]==d[i]+)
dc.AddEdge(i,e[i][j].v,e[i][j].w);
printf("%d\n",dc.Maxflow(s,t));
}
}

HDU5889 Barricade(最短路)(网络流)的更多相关文章

  1. HDU 5889 (最短路+网络流)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  2. SGU 185 Two shortest ★(最短路+网络流)

    [题意]给出一个图,求 1 -> n的2条 没有重边的最短路. 真◆神题--卡内存卡得我一脸血= =-- [思路] 一开始我的想法是两遍Dijkstra做一次删一次边不就行了么你们还又Dijks ...

  3. hdu3416 Marriage Match IV(最短路+网络流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3416 题意: 给出含n个点.m条有向边的图,每条边只能走一次,给出起点和终点,求起点到终点的最短路径有 ...

  4. bzoj 3931: [CQOI2015]网络吞吐量 -- 最短路+网络流

    3931: [CQOI2015]网络吞吐量 Time Limit: 10 Sec  Memory Limit: 512 MB Description 路由是指通过计算机网络把信息从源地址传输到目的地址 ...

  5. Barricade---hdu5889(最短路+网络流)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5889 题意:有n个点m条边,每条边的长度相同,我们可以默认为1,构成一个无向图:现在起点为1,终点为n ...

  6. hdu-3416(最短路+网络流)

    题意:给你一个有向权图,问你从S到E有几条最短路,每条边直走一次的情况下: 解题思路:每条边直走一次,最大流边权为1,因为要算几条最短路,那么能得到最短路的路径标记下,然后跑最大流 代码: #incl ...

  7. hdu-5889-最短路+网络流/最小割

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

  8. [bzoj3931][CQOI2015]网络吞吐量——最短路+网络流

    题目 传送门 题解 第一次一遍就AC一道bzoj上的题,虽然是一道水题... 我们做一边最短路,求出每个点的dist,然后再做一次类似spfa的操作,求出每个点是否可以用于建图. 在新图上拆点跑一边d ...

  9. hdu多校第一场1005(hdu6582)Path 最短路/网络流

    题意: 在无向图上删边,让此图上从起点到终点的最短路长度变大,删边的代价是边长,求最小代价. 题解: 先跑一遍迪杰斯特拉,求出所有点的d[]值,然后在原图上保留所有的边(i,j)仅当i,j满足d[j] ...

随机推荐

  1. zoj 2112 动态区间求第k大

    题目大意: 动态单点更新,然后多次询问求区间内第k大 这里单个的主席树不能实现,这里采取的是树状数组套主席树 首先可以想的是将静态主席树先构建好,不去动它,这里空间复杂度就是O(nlogn),这个只要 ...

  2. POJ 3237

    题目大意:指定一颗树上有3个操作:询问操作,询问a点和b点之间的路径上最长的那条边的长度:取反操作,将a点和b点之间的路径权值都取相反数:变化操作,把某条边的权值变成指定的值. #include &l ...

  3. Cisco IOS Debug Command Reference I through L

    debug iapp through debug ip ftp debug iapp : to begin debugging of IAPP operations(in privileged EXE ...

  4. Android TextView多行垂直滚动

    在Android应用中,有时候需要TextView可以垂直滚动,今天我就介绍一下怎么实现的.在布局里: <TextView android:id="@+id/tvCWJ" a ...

  5. MATLAB中mexFunction函数的接口规范(转载)

    MEX文件的调用极为方便,其调用方式与MATALAB的内建函数完全相同,只需要在命令窗口内输入对应的文件名称即可. C语言MEX程序代码文件有计算子例程(Computational routine)和 ...

  6. STM32之GPIO端口位带操作

    #ifndef __SYS_H #define __SYS_H #include "stm32f10x.h" //位带操作 //把“位带地址+位序号”转换别名地址宏 #define ...

  7. ognl表达式root中取值顺序

    不加#,先从栈顶取,如果没有(是没有这个属性而不是这个属性没有值),再往下取. 如果栈顶和非栈顶的对象拥有同一个属性名称,想直接取非栈顶的属性可以在ognl中用#root[i].属性名,可以取到属性的 ...

  8. POJ 2185 - Milking Grid (二维KMP)

    题意:给出一个字符矩形,问找到一个最小的字符矩形,令它无限复制之后包含原来的矩形. 此题用KMP+枚举来做. 一维的字符串匹配问题可以用KMP来解决.但是二维的就很难下手.我们可以将二维问题转化为一维 ...

  9. (spring-第11回【IoC基础篇】)BeanWrapper--实例化Bean的第四大利器

    重复是理解和记忆的最好方法.在讲实例化Bean的每个步骤之前,我都会先复习一下Bean实例化的整个过程: 结合图片我们回顾一下具体的过程: ResourceLoader加载配置信息, 由BeanDef ...

  10. IOS图片缩放

    1.自动缩放到指定大小 + (UIImage *)thumbnailWithImage:(UIImage *)image size:(CGSize)asize { UIImage *newimage; ...