【DWT笔记】基于小波变换的降噪技术


一、前言

在现实生活和工作中,噪声无处不在,在许多领域中,如天文、医学图像和计算机视觉方面收集到的数据常常是含有噪声的。噪声可能来自获取数据的过程,也可能来自环境影响。由于种种原因,总会存在噪声,噪声的存在往往会掩盖信号本身所要表现的信息,所以在实际的信号处理中,常常需要对信号进行预处理,而预处理最主要的一个步骤就是降噪。

小波分析是近年来发展起来的一种新的信号处理工具,这种方法源于傅立叶分析,小波(wavelet),即小区域的波,仅仅在非常有限的一段区间有非零值,而不是像正弦波和余弦波那样无始无终。小波可以沿时间轴前后平移,也可按比例伸展和压缩以获取低频和高频小波,构造好的小波函数可以用于滤波或压缩信号,从而可以提取出已含噪声信号中的有用信号。


二、小波去噪的原理

从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程图如下所示:

一个含噪的模型可以表示如下:

其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。

假设,e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,我们对 s(k)信号进行小波分解的时候,则噪声部分通常包含在HL、LH、HH中,如下图所示,只要对HL、LH、HH作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

我们可以看到,小波去噪的原理是比较简单类,类似以往我们常见的低通滤波器的方法,但是由于小波去找保留了特征提取的部分,所以性能上是优于传统的去噪方法的。


三、小波去噪的基本方法

一般来说, 一维信号的降噪过程可以分为 3个步骤

      信号的小波分解。选择一个小波并确定一个小波分解的层次N,然后对信号进行N层小波分解计算。

      小波分解高频系数的阈值量化。对第1层到第N层的每一层高频系数(三个方向), 选择一个阈值进行阈值量化处理.

这一步是最关键的一步,主要体现在阈值的选择与量化处理的过程,在每层阈值的选择上matlab提供了很多自适应的方法, 这里不一一介绍,量化处理方法主要有硬阈值量化与软阈值量化。下图是二者的区别:

上面左图是硬阈值量化,右图是软阈值量化。采用两种不同的方法,达到的效果是,硬阈值方法可以很好地保留信号边缘等局部特征,软阈值处理相对要平滑,但会造成边缘模糊等失真现象。

      信号的小波重构。根据小波分解的第 N层的低频系数和经过量化处理后的第1层到第N 层的高频系数,进行信号的小波重构。


四、仿真实验

在这里,我采用lena的256*256的标准图进行分析,采用 coif2的两层小波分解,并从三个方向上对小波系数进行软阈值量化,为了方便起见,阈值的选择我采用手动设定的方法,最后对图像进行小波重构,后面部分会给出重构的效果图和相应的峰值信噪比。代码如下:

 clear;
 clc;
 X=imread('lena256.bmp');
 %X=rgb2gray(X);
 figure(1);
 subplot(121);
 imshow(X);
 title('原始图像');
 X=double(X);

 XX=X+10*randn(size(X));
 subplot(122);
 imshow(uint8(XX));
 title('含噪图像');

  [c,l]=wavedec2(XX,2,'coif2'); 

 n=[1,2];
 p=[10.28,10.08]; 

 nc_h=wthcoef2('h',c,l,n,p,'s');

 X1=waverec2(nc_h,l,'coif2');
 figure(2);
 subplot(131);
 imshow(uint8(X1));
 title('第一次消噪后的图像'); 

 nc_v=wthcoef2('v',nc_h,l,n,p,'s');

 X2=waverec2(nc_v,l,'coif2');
 subplot(132);
 imshow(uint8(X2));
 title('第二次消噪后的图像');

 nc_d=wthcoef2('d',nc_v,l,n,p,'s');

 X3=waverec2(nc_d,l,'coif2');
 subplot(133);
 imshow(uint8(X3));
 title('第三次消噪后的图像');

 psnr0=psnr(X,XX);
 psnr1=psnr(X,X1);
 psnr2=psnr(X,X2);
 psnr3=psnr(X,X3);
 

下面给出运行的效果图,为了显示方便,我重新排版了下,下图是原图和加噪后的图像:

下面给出去噪的效果图:

信噪比数据为:

 1 psnr0 =
 2    28.1782
 3
 4 psnr1 =
 5    29.1551
 6
 7 psnr2 =
 8    30.0441
 9
10 psnr3 =
11    31.6952

为了增加实验室可信度,可以写一个简单的基于DCT变换的低通滤波器的去噪的方法,如下所示:

 clear;
 clc;

 X=imread('lena256.bmp');
 %X=rgb2gray(X);
 figure(1);
 subplot(141);
 imshow(X);
 title('原始图像');
 % 生成含噪图像并图示
 X=double(X);

 % 添加随机噪声
 XX=X+10*randn(size(X)); 

 Y1=dct2(XX);

 [m,n]=size(Y1)
 for i=1:m
     for j=1:n
         if abs(Y1(i,j))<20 %这个阈值要根据实际情况设定
            Y1(i,j)=0;
         end
     end
 end

 YY1=idct2(Y1);
 subplot(142)
 imshow(uint8(XX));

 subplot(143)
 imshow(uint8(YY1));

 psnr0=psnr(X,XX)
 psnr4=psnr(X,YY1)

运行的效果图为:

运行的结果为:

 psnr0 =

    28.1068

 psnr4 =

    28.6162

由此,我们可以看出,小波变换去噪能力还是比较突出的。


五、小结

离散小波变换(DWT)在图像处理中的运用还是十分广泛的,去噪只是其中一个。有时间会跟大家一起总结下其他的应用。

我的新浪微博:http://weibo.com/3109428257/profile?rightmod=1&wvr=5&mod=personinfo

【DWT笔记】基于小波变换的降噪技术的更多相关文章

  1. 【DWT笔记】傅里叶变换与小波变换

    [DWT笔记]傅里叶变换与小波变换 一.前言 我们经常接触到的信号,正弦信号,余弦信号,甚至是复杂的心电图.脑电图.地震波信号都是时域上的信号,我们也成为原始信号,但是通常情况下,我们在原始信号中得到 ...

  2. 基于小波变换的数字图像处理(MATLAB源代码)

    基于小波变换的数字图像处理(MATLAB源代码) clear all; close all; clc;M=256;%原图像长度N=64; %水印长度[filename1,pathname]=uiget ...

  3. Linux学习笔记——基于鸟哥的Linux私房菜

    Linux学习笔记--基于鸟哥的Linux私房菜 ***** ARM与嵌入式linux的入门建议 (1) 学习基本的裸机编程:ARM7或ARM9,理解硬件架构和控制原理 (这一步是绝对的根基) (2) ...

  4. [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2

    之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...

  5. Android开发自学笔记(基于Android Studio1.3.1)—1.环境搭建(转)

    一.引言    本套学习笔记的开发环境是Windows 10 专业版和Android Studio 的最新版1.3.1. Android Studio 是一个Android开发环境,基于Intelli ...

  6. Linux常用命令学习笔记——基于CentOS 7

    前言:最近在linux培训时复习了一下linux系统中一些常用的命令和用法,整理成了笔记,虽然些许零散,但希望对大家有所帮助. 目录 0.帮助指令 1.关机.重启.注销命令 2.文件和目录操作命令 3 ...

  7. ArrayList源码阅读笔记(基于JDk1.8)

    关键常量: private static final int DEFAULT_CAPACITY = 10; 当没有其他参数影响数组大小时的默认数组大小 private static final Obj ...

  8. hibernate笔记--基于主键的单(双)向的一对一映射关系

    上一节介绍的基于外键的一对一映射关系中,在Person表中有一个外键列idCard_id,对应的idCard表的主键id,至于基于主键的一对一映射关系,就是指Person表中抛弃了idcard_id这 ...

  9. hibernate笔记--基于外键的单(双)向的一对一映射关系

    假设我们有两张表,人员信息表Person,和身份信息表IdCard,我们知道每个人只有一个身份证号,所以这里的Person和IdCard表是一一对应的,也就是一对一的映射关系,基于外键的单向一对一映射 ...

随机推荐

  1. 在CentOS下面编译WizNote Qt Project

    编译环境 CentOS 64位 Desktop 版本:6.5 编译前的准备: CentOS的用户默认没有root权限,如果当前用户没有权限root,则可以在终端里面执行下面的命令: su root s ...

  2. Java:基本数据类型包装类

    基本数据类型对象包装类    基本数据类型(关键字)   引用数据类型(类)          byte                          Byte          short   ...

  3. wordcount数据流过程解析

    (1)执行hadoopFile()操作,其中有生成HadoopRDD的new 方法.然后执行map方法.pair => pair._2.toString,只对Value值进行操作.在textFi ...

  4. CleanAOP实战系列--WPF中MVVM自动更新

    CleanAOP实战系列--WPF中MVVM自动更新 作者: 立地 邮箱: jarvin_g@126.com QQ: 511363759 CleanAOP介绍:https://github.com/J ...

  5. 开发ProxyServer的时候如何在一台PC上调试

    为了测试在真实的网络环境下你的ProxyServer性能如何,而你手头又只有一台电脑,怎么办? 打开你的ProxyServer(我用java写的,因此ProxyServer的进程是javaw.exe) ...

  6. 什么是智能dns解析

    智能DNS解析是针对目前电信和网通互联互通不畅的问题推出的一种DNS解决方案.具体实现是:把同样的域名如test.winiis.com的A记录分别设置指向网通和电信IP,当网通的客户访问时,智能DNS ...

  7. 运行javascript的方式

    1.放在超链接中: <a href="javascript:alert('aaaa')" >Test</a> 2.直接加载 <script type= ...

  8. [HDOJ1078]FatMouse and Cheese(记忆化搜索)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1078 题意:给出n, k,然后给出n*n的地图,(下标0~n-1),有一只老鼠从(0,0)处出发,只能 ...

  9. JS 样式操作学习总结。

    在我们编写网页的时候,样式表示我们常常需要相伴的内容,谁然很招人烦.恕我前端菜鸟对这东西很是无力啊.下面是我在代码浪潮中的虚席到的一些东西. 1.样式表内容修改方式. 2.当前元素样式内容获取. 3. ...

  10. IIS7或者IIS7.5部署MVC项目时出现404错误

    IIS7或者IIS7.5部署MVC项目时出现404错误 服务器上需要安装Windows 补丁 kb980368  下载链接:http://support.microsoft.com/kb/980368