poj 1986 Distance Queries LCA
题目链接:http://poj.org/problem?id=1986
Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible!
题目描述:已知n(n<=40000)个农场和一些农场之间的距离,给出很多组询问,在线询问每两个农场之间的距离。
算法分析:这道题运用LCA的在线和离线算法都可以。
离线LCA思路:以某一个农场为树根,用数组保存剩余每个农场到树根的距离为dist[u],那么农场u和v的距离=dist[u]+dist[v]-2*dist[q](q为LCA(u,v))。
我的做法虽然可以AC,但是很慢,有很大的优化空间:在两个节点不断向树根靠近的同时,把每向上走一层的路径上的权值(即农场之间的距离)加起来即为答案。我用离线的LCA代码运用在在线方法上,仔细想想在求每个节点的深度时就可以把离线思想中dist数组求出来了,更简单,速度更快。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<vector>
#define inf 0x7fffffff
using namespace std;
const int maxn=+;
const int max_log_maxn=; int n,m,root;
vector<pair<int,int> > G[maxn];
int father[max_log_maxn][maxn],d[maxn];
int sum[max_log_maxn][maxn]; void dfs(int u,int p,int depth)
{
father[][u]=p;
d[u]=depth;
int num=G[u].size();
for (int i= ;i<num ;i++)
{
int v=G[u][i].first;
int len=G[u][i].second;
if (v != p)
{
sum[][v]=len;
dfs(v,u,depth+);
}
}
} void init()
{
dfs(root,-,);
for (int k= ;k+<max_log_maxn ;k++)
{
for (int i= ;i<=n ;i++)
{
if (father[k][i]<)
{
father[k+][i]=-;
sum[k+][i]=;
}
else
{
father[k+][i]=father[k][father[k][i] ];
sum[k+][i]=sum[k][i]+sum[k][father[k][i] ];
}
}
}
} int LCA(int u,int v)
{
if (d[u]>d[v]) swap(u,v);
int Sum=;
for (int k= ;k<max_log_maxn ;k++)
{
if ((d[v]-d[u])>>k & )
{
Sum += sum[k][v];
v=father[k][v];
}
}
if (u==v) return Sum;
for (int k=max_log_maxn- ;k>= ;k--)
{
if (father[k][u] != father[k][v])
{
Sum += sum[k][u];
Sum += sum[k][v];
u=father[k][u];
v=father[k][v];
}
}
Sum += sum[][u];
Sum += sum[][v];
return Sum;
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
int u,v,length;
char ch[];
for (int i= ;i<=n ;i++) G[i].clear();
for (int i= ;i<max_log_maxn ;i++)
{
for (int j= ;j<maxn ;j++)
sum[i][j]=;
}
for (int i= ;i<m ;i++)
{
scanf("%d%d%d%s",&u,&v,&length,ch);
G[u].push_back(make_pair(v,length));
G[v].push_back(make_pair(u,length));
}
root=;
init();
int k;
scanf("%d",&k);
for (int i= ;i<k ;i++)
{
scanf("%d%d",&u,&v);
printf("%d\n",LCA(u,v));
}
}
return ;
}
poj 1986 Distance Queries LCA的更多相关文章
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]
题目链接:http://poj.org/problem?id=1986 Description Farmer John's cows refused to run in his marathon si ...
- POJ 1986 Distance Queries(LCA Tarjan法)
Distance Queries [题目链接]Distance Queries [题目类型]LCA Tarjan法 &题意: 输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面 ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- poj 1986 Distance Queries(LCA)
Description Farmer John's cows refused to run in his marathon since he chose a path much too long fo ...
- poj 1986 Distance Queries 带权lca 模版题
Distance Queries Description Farmer John's cows refused to run in his marathon since he chose a pa ...
随机推荐
- 获取屏幕分辨率(C#)
C#获取屏幕分辨率的方法 static void Main(string[] args) { // 控制台程序,需要添加程序集: // using System.Drawing; // using S ...
- css3选择器——导图篇
css3选择器主要有:基本选择器 , 层次选择器, 伪类选择器 , 伪元素选择器 , 属性选择器 基本选择器 层次选择器 伪类选择器分为 动态伪类选择器, 目标伪类选择器, 语言伪类选择器, U ...
- Spark和Hadoop作业之间的区别
Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么在内部实现Spark和Hadoop作业模型都一样吗?答案是不对的. 熟悉Hadoop的人应该都知道 ...
- 【积硅计划】http协议基础
http:超文本传输协议,它允许将超文本标记(html)文档从web服务器传送到浏览器.目前版本HTTP/1.1 http请求过程: proxy:代理服务器,网络信息的中转站.功能如下: ...
- unp.h
unp.h #ifndef _UNP_H_ #define _UNP_H_ #include <unistd.h> #include <stdio.h> #include &l ...
- 转 在SQL Server中创建用户角色及授权(使用SQL语句)
目录 要想成功访问 SQL Server 数据库中的数据 我们需要两个方面的授权 完整的代码示例 使用存储过程来完成用户创建 实例 要想成功访问 SQL Server 数据库中的数据, 我们需要两个 ...
- Python sequence (序列)
序列简介 sequence 是一组有序元素的组合 序列可以是多个元素,也可以一个元素都没有 序列有2种:tuple(定值表).List(表) D:\python\Python_Day>pytho ...
- 安装MySQL的心得
1.去官网上下载适合自己电脑的安装包,最好在网上查查教程起码知道自己应该怎么下载,下载哪一个. 2.我遇到的问题不多:<1>.没在bin目录下安装,启动数据库时出现错误2:<2> ...
- iOS App Launch Option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有 ...
- IOS 其他 - 如何让 app 支持32位和64位
让App支持32-bit和64-bit基本步骤 1.确保Xcode版本号>=5.0.1 2.更新project settings, minimum deployment target >= ...