AOJ/树与二叉搜索树习题集
ALDS1_7_A-RootedTree.
Description:
A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).
A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."
Your task is to write a program which reports the following information for each node u of a given rooted tree T:
node ID of u
parent of u
depth of u
node type (root, internal node or leaf)
a list of chidlren of u
If the last edge on the path from the root r of a tree T to a node x is (p, x), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.
A node with no children is an external node or leaf. A nonleaf node is an internal node
The number of children of a node x in a rooted tree T is called the degree of x.
The length of the path from the root r to a node x is the depth of x in T.
Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.
Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.
Input:
The first line of the input includes an integer n, the number of nodes of the tree.
In the next n lines, the information of each node u is given in the following format:
id k c1 c2 ... ck
where id is the node ID of u, k is the degree of u, c1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.
Output:
Print the information of each node in the following format ordered by IDs:
node id: parent = p , depth = d, type, [c1...ck]
p is ID of its parent. If the node does not have a parent, print -1.
d is depth of the node.
type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.
c1...ck is the list of children as a ordered tree.
Please follow the format presented in a sample output below.
Constraints:
≤ n ≤ 100000
SampleInput1:
13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0
SampleOutput1:
node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []
SampleInput2:
4
1 3 3 2 0
0 0
3 0
2 0
SampleOutput2:
node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []
Codes:
//#define LOCAL
#include <cstdio>
#define N -1
#define M 100010
struct Node { int p, l, r; };
Node T[M]; int A[M];
void print(int a) {
int i = 0, b = T[a].l;
printf("node %d: parent = %d, depth = %d, ", a, T[a].p, A[a]);
if(T[a].p == N) printf("root, [");
else if(T[a].l == N) printf("leaf, [");
else printf("internal node, [");
for(; b!=N; ++i, b=T[b].r) {
if(i) printf(", ");
printf("%d", b);
}
printf("]\n");
}
void rec(int a, int b) {
A[a] = b;
if(T[a].r != N) rec(T[a].r, b);
if(T[a].l != N) rec(T[a].l, b+1);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int a, b, c, d, i, j, n, r;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = T[i].l = T[i].r = -1;
for(i=0; i<n; ++i) {
scanf("%d%d", &a, &b);
for(j=0; j<b; ++j) {
scanf("%d", &c);
if(!j) T[a].l = c;
else T[d].r = c;
d = c; T[c].p = a;
}
}
for(i=0; i<n; ++i) {
if(T[i].p == N) { r = i; break; }
}
rec(r, 0);
for(i=0; i<n; ++i) print(i);
return 0;
}
ALDS1_7_B-BinaryTree.
Description:
A rooted binary tree is a tree with a root node in which every node has at most two children.
Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:
node ID of u
parent of u
sibling of u
the number of children of u
depth of u
height of u
node type (root, internal node or leaf)
If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).
The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.
Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.
Input:
The first line of the input includes an integer n, the number of nodes of the tree.
In the next n lines, the information of each node is given in the following format:
id left right
id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.
Output:
Print the information of each node in the following format:
node id: parent = p , sibling = s , degree = deg, depth = dep, height = h, type
p is ID of its parent. If the node does not have a parent, print -1.
s is ID of its sibling. If the node does not have a sibling, print -1.
deg, dep and h are the number of children, depth and height of the node respectively.
type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.
Please follow the format presented in a sample output below.
Constraints:
1 ≤ n ≤ 25
SampleInput:
9
0 1 4
1 2 3
2 -1 -1
3 -1 -1
4 5 8
5 6 7
6 -1 -1
7 -1 -1
8 -1 -1
SampleOutput:
node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root
node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node
node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf
node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf
node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node
node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node
node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf
node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf
node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf
Codes:
//#define LOCAL
#include <cstdio>
#define MAX 10000
#define NIL -1
struct Node { int parent, left, right; };
Node T[MAX]; int n, D[MAX], H[MAX];
void setDepth(int u, int d) {
if(u == NIL) return;
D[u] = d;
setDepth(T[u].left, d+1);
setDepth(T[u].right, d+1);
}
int setHeight(int u) {
int h1 = 0, h2 = 0;
if(T[u].left != NIL) h1 = setHeight(T[u].left)+1;
if(T[u].right != NIL) h2 = setHeight(T[u].right)+1;
return H[u] = h1>h2?h1:h2;
}
int getSibling(int u) {
if(T[u].parent == NIL) return NIL;
if(T[T[u].parent].left!=u && T[T[u].parent].left!=NIL) return T[T[u].parent].left;
if(T[T[u].parent].right!=u && T[T[u].parent].right!=NIL) return T[T[u].parent].right;
return NIL;
}
void print(int u) {
printf("node %d: parent = %d, sibling = %d, ", u, T[u].parent, getSibling(u));
int deg = 0;
if(T[u].left != NIL) ++deg;
if(T[u].right != NIL) ++deg;
printf("degree = %d, depth = %d, height = %d, ", deg, D[u], H[u]);
if(T[u].parent == NIL) printf("root\n");
else if(T[u].left==NIL && T[u].right==NIL) printf("leaf\n");
else printf("internal node\n");
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int i, v, l, r, root = 0;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].parent = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].left = l, T[v].right = r;
if(l != NIL) T[l].parent = v;
if(r != NIL) T[r].parent = v;
}
for(i=0; i<n; ++i)
if(T[i].parent == NIL) root = i;
setDepth(root, 0); setHeight(root);
for(i=0; i<n; ++i) print(i);
return 0;
}
ALDS1_7_C-TreeWalk.
Description:
Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either
contains no nodes, or
is composed of three disjoint sets of nodes:
- a root node.
- a binary tree called its left subtree.
- a binary tree called its right subtree.
Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:
Print the root, the left subtree and right subtree (preorder).
Print the left subtree, the root and right subtree (inorder).
Print the left subtree, right subtree and the root (postorder).
Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.
Input:
The first line of the input includes an integer n, the number of nodes of the tree.
In the next n linen, the information of each node is given in the following format:
id left right
id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1
Output:
In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.
In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.
In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.
Print a space character before each node ID.
Constraints:
1 ≤ n ≤ 25
SampleInput1:
9
0 1 4
1 2 3
2 -1 -1
3 -1 -1
4 5 8
5 6 7
6 -1 -1
7 -1 -1
8 -1 -1
SampleOutput1:
Preorder
0 1 2 3 4 5 6 7 8
Inorder
2 1 3 0 6 5 7 4 8
Postorder
2 3 1 6 7 5 8 4 0
Codes:
//#define LOCAL
#include <cstdio>
#define MAX 10000
#define NIL -1
struct Node { int p, l, r; };
Node T[MAX];
void preParse(int u) {
if(u == NIL) return;
printf(" %d", u);
preParse(T[u].l);
preParse(T[u].r);
}
void inParese(int u) {
if(u == NIL) return;
inParese(T[u].l);
printf(" %d", u);
inParese(T[u].r);
}
void postParse(int u) {
if(u == NIL) return;
postParse(T[u].l);
postParse(T[u].r);
printf(" %d", u);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int n, i, v, l, r, root;
scanf("%d", &n);
for(i=0; i<n; ++i) T[i].p = NIL;
for(i=0; i<n; ++i) {
scanf("%d%d%d", &v, &l, &r);
T[v].l = l, T[v].r = r;
if(l != NIL) T[l].p = v;
if(r != NIL) T[r].p = v;
}
for(i=0; i<n; ++i)
if(T[i].p == NIL) root = i;
printf("Preorder\n"); preParse(root);
printf("\nInorder\n"); inParese(root);
printf("\nPostorder\n"); postParse(root);
printf("\n");
return 0;
}
ALDS1_7_D-ReconstructionOfTheTree.
Codes:
#include <iostream>
#include <string>
#include <algorithm>
#include <vector>
using namespace std;
int n, pos;
vector<int> pre, in, post;
void rec(int l, int r) {
if(l >= r) return;
int root = pre[pos++];
int m = distance(in.begin(), find(in.begin(),in.end(),root));
rec(1, m);
rec(m+1, r);
post.push_back(root);
}
void solve() {
pos = 0;
rec(0, pre.size());
for(int i=0; i<n; ++i) {
if(i) cout << " ";
cout << post[i];
}
cout << endl;
}
int main()
{
int k;
cin >> n;
for(int i=0; i<n; ++i) {
cin >> k;
pre.push_back(k);
}
for(int i=0; i<n; ++i) {
cin >> k;
in.push_back(k);
}
solve();
return 0;
}
ALDS1_8_A-BinarySearchTreeI
Codes:
//#define LOCAL
#include <cstdio>
#include <cstdlib>
struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R;
void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N;
while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
}
void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
}
void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'i') {
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
}
return 0;
}
ALDS1_8_B-BinarySearchTreeII
Codes:
//#define LOCAL
#include <cstdio>
#include <cstdlib>
struct Node {
int k;
Node *p, *l, *r;
};
Node *N, *R;
Node* find(Node *u, int a) {
while(u!=N && a!=u->k) {
if(a < u->k) u = u->l;
else u = u->r;
}
}
void insert(int u) {
Node *a = R, *b = N, *c;
c = (Node *)malloc(sizeof(Node));
c->k = u, c->l = N, c->r = N;
while(a != N) {
b = a;
if(c->k < a->k) a = a->l;
else a = a->r;
}
c->p = b;
if(b == N) {
R = c;
} else {
if(c->k < b->k) b->l = c;
else b->r = c;
}
}
void inOrder(Node *u) {
if(u == N) return;
inOrder(u->l);
printf(" %d", u->k);
inOrder(u->r);
}
void preOrder(Node *u) {
if(u == N) return;
printf(" %d", u->k);
preOrder(u->l);
preOrder(u->r);
}
int main()
{
#ifdef LOCAL
freopen("E:\\Temp\\input.txt", "r", stdin);
freopen("E:\\Temp\\output.txt", "w", stdout);
#endif
int a, i, n;
char c[10];
scanf("%d", &n);
for(i=0; i<n; ++i) {
scanf("%s", c);
if(c[0] == 'f') {
scanf("%d", &a);
Node *t = find(R, a);
if(t != N) printf("yes\n");
else printf("no\n");
} else if(c[0] == 'i'){
scanf("%d", &a);
insert(a);
} else {
inOrder(R); printf("\n");
preOrder(R); printf("\n");
}
}
return 0;
}
AOJ/树与二叉搜索树习题集的更多相关文章
- 树&二叉树&二叉搜索树
树&二叉树 树是由节点和边构成,储存元素的集合.节点分根节点.父节点和子节点的概念. 二叉树binary tree,则加了"二叉"(binary),意思是在树中作区分.每个 ...
- 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)
定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...
- AOJ/树二叉搜索树习题集
ALDS1_7_A-RootedTree. Description: A graph G = (V, E) is a data structure where V is a finite set of ...
- 查找树ADT——二叉搜索树
在以下讨论中,虽然任意复杂的关键字都是允许的,但为了简单起见,假设它们都是整数,并且所有的关键字是互异的. 总概 使二叉树成为二叉查找树的性质是,对于树中的每个节点X,它的左子树中所有关键字值小于 ...
- 数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)
树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树 ...
- PAT 天梯赛 L2-004 这是二叉搜索树吗?
递归判断+建树 题目链接:https://www.patest.cn/contests/gplt/L2-004 题解 二叉搜索树的特点就是其根节点的值是位于左右子树之间的,即大于左子树的所有值,但是小 ...
- 剑指Offer 62. 二叉搜索树的第k个结点 (二叉搜索树)
题目描述 给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. 例如, 5 / \ 3 7 / \ / \ 2 4 6 ...
- hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)
二叉搜索树 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submiss ...
- 二叉搜索树-php实现 插入删除查找等操作
二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...
随机推荐
- WPF 中TextBox 增加输入检测,错误提示
先来总结下实现错误提示功能的几个要点 1:binding 的ValidationRules 2 :Validation.ErrorTemplate 首先我们在界面添加一个TextBox, Text绑定 ...
- springboot项目中进行XSS过滤
简单介绍 XSS : 跨站脚本攻击(Cross Site Scripting),为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS.恶意 ...
- JSONObject和JSONArray的使用
1.Json里面的数据是以一种键值对的方式存在("key","value"),其语法多是{},[]的单独形式或者组合形式. 2.对于JsonObject: a. ...
- docker安装与配置redis详细过程
注:大鸟飞过,这只是简单搭建,能快速运用而已!! 第一步 pull redis 命令:docker pull redis 第二步 创建redis管理目录,方便后期管理 命令: mkdir /data/ ...
- vue@cli3 public目录下的静态图片,如何使用在css类文件中(sass可行,纯css不行)
之前写了一篇vue文件怎么使用的文章,有人问我怎么在css文件中使用public下的文件,这是个好问题,因为我之前都没有研究过 需要解决的2个问题 一开始按照vue文件的使用方式(https://ww ...
- 一. Go微服务--隔离设计
1. 前言 隔离设计源于船舶行业,一般而言无论大船还是小船,都会有一些隔板,将船分为不同的空间,这样如果有船舱漏水一般只会影响这一小块空间,不至于把整个船都给搞沉了. 同样我们的软件服务也是一个道理, ...
- 自研 Pulsar Starter:winfun-pulsar-spring-boot-starter
原文:自研 Pulsar Starter:winfun-pulsar-spring-boot-starter 里程碑 版本 功能点 作者 完成 1.0.0 支持PulsarTemplate发送消息&a ...
- JOB状态与并发
由于job每次被执行时都会创建一个新的实例, jobDetail实例时,要进行数据存储或者,特殊字段操作,需要每次schedul执行job时保留之前的数据, 那么就需要job在有状态下保持之前的数据信 ...
- roscore启动不完全问题
运行roscore,得到如下日志,且一直卡着无法继续执行 ... logging to /home/xbit/.ros/log/79f2952c-589c-11ea-8213-d0abd5e7d222 ...
- 由Eratosthenes筛法演变出的一种素数新筛法
这两天和walls老师交流讨论了一个中学竞赛题,我把原题稍作增强和变形,得到如下一个题: 从105到204这100个数中至少要选取多少个数才能保证选出的数中必有两个不是互素的? 我们知道最小的几个素数 ...