百篇博客系列篇.本篇为:

任务管理相关篇为:

时钟概念

  • 时间是非常重要的概念,我们整个学生阶段有个东西很重要,就是校园铃声. 它控制着上课,下课,吃饭,睡觉的节奏.没有它学校的管理就乱套了,老师拖课想拖多久就多久,那可不行,下课铃声一响就是在告诉老师时间到了,该停止了让学生HAPPY去了.

  • 操作系统也一样,需要通过时间来规范其任务的执行,操作系统中最小的时间单位是时钟节拍 (OS Tick)。任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如线程的延时、线程的时间片轮转调度以及定时器超时等。时钟节拍是特定的周期性中断,这个中断可以看做是系统心跳,中断之间的时间间隔取决于不同的应用,一般是 1ms–100ms,时钟节拍率越快,系统的实时响应越快,但是系统的额外开销就越大,从系统启动开始计数的时钟节拍数称为系统时间。

  • 在鸿蒙内核中,时钟节拍的长度可以根据 LOSCFG_BASE_CORE_TICK_PER_SECOND 的定义来调整,等于 1/LOSCFG_BASE_CORE_TICK_PER_SECOND 秒。

时钟节拍的实现方式

时钟节拍由配置为中断触发模式的硬件定时器产生,当中断到来时,将调用一次:void OsTickHandler(void),通知操作系统已经过去一个系统时钟;不同硬件定时器中断实现都不同,

/**
* @ingroup los_config
* Number of Ticks in one second
*/
#ifndef LOSCFG_BASE_CORE_TICK_PER_SECOND
#define LOSCFG_BASE_CORE_TICK_PER_SECOND 100 //默认每秒100次触发,当然这是可以改的
#endif

每秒100个tick,时间单位为10毫秒, 即每秒调用时钟中断处理程序100次.

/*
* Description : Tick interruption handler
*///节拍中断处理函数 ,鸿蒙默认10ms触发一次
LITE_OS_SEC_TEXT VOID OsTickHandler(VOID)
{
//...
OsTimesliceCheck();//进程和任务的时间片检查
OsTaskScan(); /* task timeout scan *///任务扫描
#if (LOSCFG_BASE_CORE_SWTMR == YES)
OsSwtmrScan();//定时器扫描,看是否有超时的定时器
#endif
}

它主要干了三件事情

第一:检查当前任务的时间片,任务执行一次分配多少时间呢?答案是2个时间片,即 20ms.

#ifndef LOSCFG_BASE_CORE_TIMESLICE_TIMEOUT
#define LOSCFG_BASE_CORE_TIMESLICE_TIMEOUT 2 //2个时间片,20ms
#endif
//检查进程和任务的时间片,如果没有时间片了直接调度
LITE_OS_SEC_TEXT VOID OsTimesliceCheck(VOID)
{
LosTaskCB *runTask = NULL;
LosProcessCB *runProcess = OsCurrProcessGet();//获取当前进程
if (runProcess->policy != LOS_SCHED_RR) {//进程调度算法是否是抢占式
goto SCHED_TASK;//进程不是抢占式调度直接去检查任务的时间片
} if (runProcess->timeSlice != 0) {//进程还有时间片吗?
runProcess->timeSlice--;//进程时间片减少一次
if (runProcess->timeSlice == 0) {//没有时间片了
LOS_Schedule();//进程时间片用完,发起调度
}
} SCHED_TASK:
runTask = OsCurrTaskGet();//获取当前任务
if (runTask->policy != LOS_SCHED_RR) {//任务调度算法是否是抢占式
return;//任务不是抢占式调度直接结束检查
} if (runTask->timeSlice != 0) {//任务还有时间片吗?
runTask->timeSlice--;//任务时间片也减少一次
if (runTask->timeSlice == 0) {//没有时间片了
LOS_Schedule();//任务时间片用完,发起调度
}
}
}

第二:扫描任务,主要是检查被阻塞的任务是否可以被重新调度

LITE_OS_SEC_TEXT VOID OsTaskScan(VOID)
{
SortLinkList *sortList = NULL;
LosTaskCB *taskCB = NULL;
BOOL needSchedule = FALSE;
UINT16 tempStatus;
LOS_DL_LIST *listObject = NULL;
SortLinkAttribute *taskSortLink = NULL; taskSortLink = &OsPercpuGet()->taskSortLink;//获取任务的排序链表
taskSortLink->cursor = (taskSortLink->cursor + 1) & OS_TSK_SORTLINK_MASK;
listObject = taskSortLink->sortLink + taskSortLink->cursor;//只处理这个游标上的链表,因为系统对超时任务都已经规链表了.
//当任务因超时而挂起时,任务块处于超时排序链接上,(每个cpu)和ipc(互斥锁、扫描电镜等)的块同时被唤醒
/*不管是超时还是相应的ipc,它都在等待。现在使用synchronize sortlink precedure,因此整个任务扫描需要保护,防止另一个核心同时删除sortlink。
* When task is pended with timeout, the task block is on the timeout sortlink
* (per cpu) and ipc(mutex,sem and etc.)'s block at the same time, it can be waken
* up by either timeout or corresponding ipc it's waiting.
*
* Now synchronize sortlink preocedure is used, therefore the whole task scan needs
* to be protected, preventing another core from doing sortlink deletion at same time.
*/
LOS_SpinLock(&g_taskSpin); if (LOS_ListEmpty(listObject)) {
LOS_SpinUnlock(&g_taskSpin);
return;
}
sortList = LOS_DL_LIST_ENTRY(listObject->pstNext, SortLinkList, sortLinkNode);//拿本次Tick对应链表的SortLinkList的第一个节点sortLinkNode
ROLLNUM_DEC(sortList->idxRollNum);//滚动数-- while (ROLLNUM(sortList->idxRollNum) == 0) {//找到时间到了节点,注意这些节点都是由定时器产生的,
LOS_ListDelete(&sortList->sortLinkNode);
taskCB = LOS_DL_LIST_ENTRY(sortList, LosTaskCB, sortList);//拿任务,这里的任务都是超时任务
taskCB->taskStatus &= ~OS_TASK_STATUS_PEND_TIME;
tempStatus = taskCB->taskStatus;
if (tempStatus & OS_TASK_STATUS_PEND) {
taskCB->taskStatus &= ~OS_TASK_STATUS_PEND;
#if (LOSCFG_KERNEL_LITEIPC == YES)
taskCB->ipcStatus &= ~IPC_THREAD_STATUS_PEND;
#endif
taskCB->taskStatus |= OS_TASK_STATUS_TIMEOUT;
LOS_ListDelete(&taskCB->pendList);
taskCB->taskSem = NULL;
taskCB->taskMux = NULL;
} else {
taskCB->taskStatus &= ~OS_TASK_STATUS_DELAY;
} if (!(tempStatus & OS_TASK_STATUS_SUSPEND)) {
OS_TASK_SCHED_QUEUE_ENQUEUE(taskCB, OS_PROCESS_STATUS_PEND);
needSchedule = TRUE;
} if (LOS_ListEmpty(listObject)) {
break;
} sortList = LOS_DL_LIST_ENTRY(listObject->pstNext, SortLinkList, sortLinkNode);
} LOS_SpinUnlock(&g_taskSpin); if (needSchedule != FALSE) {//需要调度
LOS_MpSchedule(OS_MP_CPU_ALL);//核间通讯,给所有CPU发送调度信号
LOS_Schedule();//开始调度
}
}

第三:定时器扫描,看是否有超时的定时器

/*
* Description: Tick interrupt interface module of software timer
* Return : LOS_OK on success or error code on failure
*///OsSwtmrScan 由系统时钟中断处理函数调用
LITE_OS_SEC_TEXT VOID OsSwtmrScan(VOID)//扫描定时器,如果碰到超时的,就放入超时队列
{
SortLinkList *sortList = NULL;
SWTMR_CTRL_S *swtmr = NULL;
SwtmrHandlerItemPtr swtmrHandler = NULL;
LOS_DL_LIST *listObject = NULL;
SortLinkAttribute* swtmrSortLink = &OsPercpuGet()->swtmrSortLink;//拿到当前CPU的定时器链表 swtmrSortLink->cursor = (swtmrSortLink->cursor + 1) & OS_TSK_SORTLINK_MASK;
listObject = swtmrSortLink->sortLink + swtmrSortLink->cursor;
//由于swtmr是在特定的sortlink中,所以需要很小心的处理它,但其他CPU Core仍然有机会处理它,比如停止计时器
/*
* it needs to be carefully coped with, since the swtmr is in specific sortlink
* while other cores still has the chance to process it, like stop the timer.
*/
LOS_SpinLock(&g_swtmrSpin); if (LOS_ListEmpty(listObject)) {
LOS_SpinUnlock(&g_swtmrSpin);
return;
}
sortList = LOS_DL_LIST_ENTRY(listObject->pstNext, SortLinkList, sortLinkNode);
ROLLNUM_DEC(sortList->idxRollNum); while (ROLLNUM(sortList->idxRollNum) == 0) {
sortList = LOS_DL_LIST_ENTRY(listObject->pstNext, SortLinkList, sortLinkNode);
LOS_ListDelete(&sortList->sortLinkNode);
swtmr = LOS_DL_LIST_ENTRY(sortList, SWTMR_CTRL_S, stSortList); swtmrHandler = (SwtmrHandlerItemPtr)LOS_MemboxAlloc(g_swtmrHandlerPool);//取出一个可用的软时钟处理项
if (swtmrHandler != NULL) {
swtmrHandler->handler = swtmr->pfnHandler;
swtmrHandler->arg = swtmr->uwArg; if (LOS_QueueWrite(OsPercpuGet()->swtmrHandlerQueue, swtmrHandler, sizeof(CHAR *), LOS_NO_WAIT)) {
(VOID)LOS_MemboxFree(g_swtmrHandlerPool, swtmrHandler);
}
} if (swtmr->ucMode == LOS_SWTMR_MODE_ONCE) {
OsSwtmrDelete(swtmr); if (swtmr->usTimerID < (OS_SWTMR_MAX_TIMERID - LOSCFG_BASE_CORE_SWTMR_LIMIT)) {
swtmr->usTimerID += LOSCFG_BASE_CORE_SWTMR_LIMIT;
} else {
swtmr->usTimerID %= LOSCFG_BASE_CORE_SWTMR_LIMIT;
}
} else if (swtmr->ucMode == LOS_SWTMR_MODE_NO_SELFDELETE) {
swtmr->ucState = OS_SWTMR_STATUS_CREATED;
} else {
swtmr->ucOverrun++;
OsSwtmrStart(swtmr);
} if (LOS_ListEmpty(listObject)) {
break;
} sortList = LOS_DL_LIST_ENTRY(listObject->pstNext, SortLinkList, sortLinkNode);
} LOS_SpinUnlock(&g_swtmrSpin);
}

最后看调度算法的实现

//调度算法的实现
VOID OsSchedResched(VOID)
{
LosTaskCB *runTask = NULL;
LosTaskCB *newTask = NULL;
LosProcessCB *runProcess = NULL;
LosProcessCB *newProcess = NULL;
LOS_ASSERT(LOS_SpinHeld(&g_taskSpin));//必须持有任务自旋锁,自旋锁是不是进程层面去抢锁,而是CPU各自核之间去争夺锁 if (!OsPreemptableInSched()) {//是否置了重新调度标识位
return;
}
runTask = OsCurrTaskGet();//获取当前任务
newTask = OsGetTopTask();//获取优先级最最最高的任务
/* always be able to get one task */
LOS_ASSERT(newTask != NULL);//不能没有需调度的任务
if (runTask == newTask) {//当前任务就是最高任务,那还调度个啥的,直接退出.
return;
}
runTask->taskStatus &= ~OS_TASK_STATUS_RUNNING;//当前任务状态位置成不在运行状态
newTask->taskStatus |= OS_TASK_STATUS_RUNNING;//最高任务状态位置成在运行状态
runProcess = OS_PCB_FROM_PID(runTask->processID);//通过进程ID索引拿到进程实体
newProcess = OS_PCB_FROM_PID(newTask->processID);//同上
OsSchedSwitchProcess(runProcess, newProcess);//切换进程,里面主要涉及进程空间的切换,也就是MMU的上下文切换.
#if (LOSCFG_KERNEL_SMP == YES)//CPU多核的情况
/* mask new running task's owner processor */
runTask->currCpu = OS_TASK_INVALID_CPUID;//当前任务不占用CPU
newTask->currCpu = ArchCurrCpuid();//让新任务占用CPU
#endif
(VOID)OsTaskSwitchCheck(runTask, newTask);//切换task的检查
#if (LOSCFG_KERNEL_SCHED_STATISTICS == YES)
OsSchedStatistics(runTask, newTask);
#endif
if ((newTask->timeSlice == 0) && (newTask->policy == LOS_SCHED_RR)) {//没有时间片且是抢占式调度的方式,注意 非抢占式都不需要时间片的.
newTask->timeSlice = LOSCFG_BASE_CORE_TIMESLICE_TIMEOUT;//给新任务时间片 默认 20ms
}
OsCurrTaskSet((VOID*)newTask);//设置新的task为CPU核的当前任务
if (OsProcessIsUserMode(newProcess)) {//用户模式下会怎么样?
OsCurrUserTaskSet(newTask->userArea);//设置task栈空间
}
/* do the task context switch */
OsTaskSchedule(newTask, runTask);//切换任务上下文,注意OsTaskSchedule是一个汇编函数 见于 los_dispatch.s
}

鸿蒙内核源码分析.总目录

v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o

百万汉字注解.百篇博客分析

百万汉字注解 >> 精读鸿蒙源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee| github| csdn| coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< 51cto| csdn| harmony| osc >

关注不迷路.代码即人生

QQ群:790015635 | 入群密码: 666

原创不易,欢迎转载,但请注明出处.

鸿蒙内核源码分析(时钟任务篇) | 触发调度谁的贡献最大 | 百篇博客分析OpenHarmony源码 | v3.05的更多相关文章

  1. 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 百篇博客分析OpenHarmony源码 | v41.03

    百篇博客系列篇.本篇为: v41.xx 鸿蒙内核源码分析(任务切换篇) | 看汇编如何切换任务 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁 ...

  2. 鸿蒙内核源码分析(系统调用篇) | 开发者永远的口头禅 | 百篇博客分析OpenHarmony源码 | v37.03

    百篇博客系列篇.本篇为: v37.xx 鸿蒙内核源码分析(系统调用篇) | 开发者永远的口头禅 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁 ...

  3. 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念 | 百篇博客分析OpenHarmony源码 | v25.01

    百篇博客系列篇.本篇为: v25.xx 鸿蒙内核源码分析(并发并行篇) | 听过无数遍的两个概念 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度 ...

  4. 鸿蒙内核源码分析(线程概念篇) | 是谁在不停的折腾CPU? | 百篇博客分析OpenHarmony源码 | v21.06

    百篇博客系列篇.本篇为: v21.xx 鸿蒙内核源码分析(线程概念篇) | 是谁在不断的折腾CPU | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调 ...

  5. 鸿蒙内核源码分析(调度机制篇) | 任务是如何被调度执行的 | 百篇博客分析OpenHarmony源码 | v7.07

    百篇博客系列篇.本篇为: v07.xx 鸿蒙内核源码分析(调度机制篇) | 任务是如何被调度执行的 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调 ...

  6. 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列 | 百篇博客分析OpenHarmony源码 | v6.05

    百篇博客系列篇.本篇为: v06.xx 鸿蒙内核源码分析(调度队列篇) | 内核有多少个调度队列 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度 ...

  7. 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 百篇博客分析OpenHarmony源码 | v5.05

    百篇博客系列篇.本篇为: v05.xx 鸿蒙内核源码分析(任务管理篇) | 任务池是如何管理的 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度谁 ...

  8. 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 百篇博客分析OpenHarmony源码 | v4.05

    百篇博客系列篇.本篇为: v04.xx 鸿蒙内核源码分析(任务调度篇) | 任务是内核调度的单元 | 51.c.h .o 任务管理相关篇为: v03.xx 鸿蒙内核源码分析(时钟任务篇) | 触发调度 ...

  9. 鸿蒙源码分析系列(总目录) | 百万汉字注解 百篇博客分析 | 深入挖透OpenHarmony源码 | v8.23

    百篇博客系列篇.本篇为: v08.xx 鸿蒙内核源码分析(总目录) | 百万汉字注解 百篇博客分析 | 51.c.h .o 百篇博客.往期回顾 在给OpenHarmony内核源码加注过程中,整理出以下 ...

随机推荐

  1. 七:使用Session进行会话管理

    一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务 ...

  2. GPIO引脚速度的应用匹配

    GPIO 引脚速度: GPIO 引脚速度又称输出驱动电路的响应速度:(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路,通过选择速度来选择不同 ...

  3. BeanUtils使用:从一个map集合中,拷贝到javaBean中(四)

    package beanutil; import java.lang.reflect.InvocationTargetException; import java.util.HashMap; impo ...

  4. Linkerd 2.10(Step by Step)—配置代理并发

    Linkerd 2.10 系列 快速上手 Linkerd v2 Service Mesh(服务网格) 腾讯云 K8S 集群实战 Service Mesh-Linkerd2 & Traefik2 ...

  5. CentOS_Server with GUI入门

    安装模式: Server with GUI:基本的桌面系统,包括常用的桌面软件,如文档查看工具 Minimal:基本的系统,不含有任何可选的软件包 Basic Server :安装的基本系统的平台支持 ...

  6. 分布式协调组件Zookeeper之 选举机制与ZAB协议

    Zookeeper简介: Zookeeper是什么: Zookeeper 是⼀个分布式协调服务的开源框架. 主要⽤来解决分布式集群中应⽤系统的⼀致性问题, 例如怎样避免同时操作同⼀数据造成脏读的问题. ...

  7. Blazor+Dapr+K8s微服务之基于WSL安装K8s集群并部署微服务

         前面文章已经演示过,将我们的示例微服务程序DaprTest1部署到k8s上并运行.当时用的k8s是Docker for desktop 自带的k8s,只要在Docker for deskto ...

  8. Springboot自带定时任务实现动态配置Cron参数

    同学们,我今天分享一下SpringBoot动态配置Cron参数.场景是这样子的:后台管理界面对定时任务进行管理,可动态修改执行时间,然后保存入库,每次任务执行前从库里查询时间,以达到动态修改Cron参 ...

  9. viper配置管理

    安装 go get github.com/spf13/viper viper支持的功能 1.可以设置默认值 2.可以加载多种格式的配置文件,如JSON,TOML,YAML,HCL和Java属性配置文件 ...

  10. client-go实战之一:准备工作

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...