CF622F-The Sum of the k-th Powers【拉格朗日插值】
正题
题目链接:https://www.luogu.com.cn/problem/CF622F
题目大意
给出\(n,k\),求
\]
解题思路
很经典的拉格朗日差值问题
这个东西显然是可以化成一个\(k+1\)次的多项式的,所以我可以直接代\(k+2\)个点插出值来。看到顺眼先把\(n,k\)互换一下。
先上一个要刻在\(DNA\)里的公式
\]
发现这个直接计算是\(O(n^2)\)的搞不定。
上面的\(x_j-k\)挺好优化的,分别做一个前后缀积就好了,但是麻烦的是\(x_i-x_j\)。我们可以利用\(x_i\)是连续的这个性质,我们只需要带入\(x_i\in[1,n+2]\)的点即可。
此时\(x_i-x_j\)就变为了两段阶乘分别是\(\prod_{j=1}^{i-1}\frac{1}{i-j}\)和\(\prod_{j=i+1}^j\frac{1}{i-j}\)。预处理逆元前缀和就好了,需要注意的是因为后面那个式子\(i-j\)是负数所以我们需要判断一下如果\(n-i\)是奇数就要取反。
线性筛\(y_i\)的话时间复杂度\(O(n)\),懒得话直接快速幂\(O(n\log k)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e9+7;
ll n,k,ans,inv[N],suf[N],pre[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&k,&n);
// if(k<=n+2){
// for(ll i=1;i<=k;i++)
// ans=(ans+power(i,n))%P;
// printf("%d\n",ans);
// return 0;
// }
inv[1]=1;n+=2;
for(ll i=2;i<=n;i++)
inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=1;
for(ll i=1;i<=n;i++)
inv[i]=inv[i-1]*inv[i]%P;
ll tmp=1;pre[0]=suf[n+1]=1;
for(ll i=1;i<=n;i++)pre[i]=pre[i-1]*(k-i)%P;
for(ll i=n;i>=1;i--)suf[i]=suf[i+1]*(k-i)%P;
for(ll i=1,p=0;i<=n;i++){
(p+=power(i,n-2))%=P;
ans+=p*pre[i-1]%P*suf[i+1]%P*inv[i-1]%P*(((n-i)&1)?P-inv[n-i]:inv[n-i])%P;
ans=ans%P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}
CF622F-The Sum of the k-th Powers【拉格朗日插值】的更多相关文章
- Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值
The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...
- CF 622 F The Sum of the k-th Powers —— 拉格朗日插值
题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...
- CF 622F The Sum of the k-th Powers——拉格朗日插值
题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...
- [题解] CF622F The Sum of the k-th Powers
CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...
- 解题:CF622F The Sum of the k-th Powers
题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...
- 「CF622F」The Sum of the k-th Powers「拉格朗日插值」
题意 求\(\sum_{i=1}^n i^k\),\(n \leq 10^9,k \leq 10^6\) 题解 观察可得答案是一个\(k+1\)次多项式,我们找\(k+2\)个值带进去然后拉格朗日插值 ...
- Codeforces D. The Sum of the k-th Powers(拉格朗日插值)
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...
- Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...
- [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- LeetCode862. Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
随机推荐
- spring cloud 的hystrix 熔断器 和feign 调用的使用
1, 添加依赖 <dependency> <groupId>org.springframework.cloud</groupId> <artifactId&g ...
- 15.SpringMVC之异步请求
SpringMVC中异步请求相关组件 SpringMVC在此基础上对异步请求进行了封装.提供了AsyncWebRequest类型的request,并提供了处理异步请求的管理器WebAsyncManag ...
- 🏆【Alibaba微服务技术系列】「Dubbo3.0技术专题」回顾Dubbo2.x的技术原理和功能实现及源码分析(温故而知新)
RPC服务 什么叫RPC? RPC[Remote Procedure Call]是指远程过程调用,是一种进程间通信方式,他是一种技术的思想,而不是规范.它允许程序调用另一个地址空间(通常是共享网络的另 ...
- ES6 class——音乐播放器实例
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- TDSQL MySQL版基本原理-水平分表 读写分离 弹性扩展 强同步
TDSQL MySQL版(TDSQL for MySQL)是部署在腾讯云上的一种支持自动水平拆分.Shared Nothing 架构的分布式数据库.TDSQL MySQL版 即业务获取的是完整的逻辑库 ...
- vue ele 表单规则校验俩次输入密码是否相同,校验手机号 ( 前端小课堂:小细节,大进步 )
这个是密码的拦截 : [{ required: true, validator: validatePass4, trigger: "blur" }], 同级关系下写下方法,类 ...
- Zookeeper:进大厂不得不学的分布式协同利器!
大家好,我是冰河~~ 最近,有很多小伙伴让我更新一些Zookeeper的文章,正好也趁着清明假期把之前自己工作过程当中总结的Zookeeper知识点梳理了一番,打算写一个[精通Zookeeper系列] ...
- Redis详解(一)——
Redis详解1 https://www.cnblogs.com/MoYu-zc/p/14985250.html https://www.cnblogs.com/xiaoxiaotank/p/1498 ...
- WebService学习总结(六)--CXF 与Spring结合+tomcat发布
该项目在上文 WebService学习总结(四)--基于CXF的服务端开发 的基础上修改为spring上发布的webservice接口 1.新建web project 工程 2.导入spring ...
- 软件测试2021:第一次作业——热身练习(Bug)
案例一: 问题说明:在大学生服务外包创新创业大赛的注册页面填写密码的时候只有偶数位的密码可以通过验证,而基数位的密码不可以 原因分析:在密码验证的时候多加了一条验证,使得基数位的密码不能都通过验证 案 ...