CF622F-The Sum of the k-th Powers【拉格朗日插值】
正题
题目链接:https://www.luogu.com.cn/problem/CF622F
题目大意
给出\(n,k\),求
\]
解题思路
很经典的拉格朗日差值问题
这个东西显然是可以化成一个\(k+1\)次的多项式的,所以我可以直接代\(k+2\)个点插出值来。看到顺眼先把\(n,k\)互换一下。
先上一个要刻在\(DNA\)里的公式
\]
发现这个直接计算是\(O(n^2)\)的搞不定。
上面的\(x_j-k\)挺好优化的,分别做一个前后缀积就好了,但是麻烦的是\(x_i-x_j\)。我们可以利用\(x_i\)是连续的这个性质,我们只需要带入\(x_i\in[1,n+2]\)的点即可。
此时\(x_i-x_j\)就变为了两段阶乘分别是\(\prod_{j=1}^{i-1}\frac{1}{i-j}\)和\(\prod_{j=i+1}^j\frac{1}{i-j}\)。预处理逆元前缀和就好了,需要注意的是因为后面那个式子\(i-j\)是负数所以我们需要判断一下如果\(n-i\)是奇数就要取反。
线性筛\(y_i\)的话时间复杂度\(O(n)\),懒得话直接快速幂\(O(n\log k)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e9+7;
ll n,k,ans,inv[N],suf[N],pre[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&k,&n);
// if(k<=n+2){
// for(ll i=1;i<=k;i++)
// ans=(ans+power(i,n))%P;
// printf("%d\n",ans);
// return 0;
// }
inv[1]=1;n+=2;
for(ll i=2;i<=n;i++)
inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=1;
for(ll i=1;i<=n;i++)
inv[i]=inv[i-1]*inv[i]%P;
ll tmp=1;pre[0]=suf[n+1]=1;
for(ll i=1;i<=n;i++)pre[i]=pre[i-1]*(k-i)%P;
for(ll i=n;i>=1;i--)suf[i]=suf[i+1]*(k-i)%P;
for(ll i=1,p=0;i<=n;i++){
(p+=power(i,n-2))%=P;
ans+=p*pre[i-1]%P*suf[i+1]%P*inv[i-1]%P*(((n-i)&1)?P-inv[n-i]:inv[n-i])%P;
ans=ans%P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}
CF622F-The Sum of the k-th Powers【拉格朗日插值】的更多相关文章
- Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值
The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...
- CF 622 F The Sum of the k-th Powers —— 拉格朗日插值
题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...
- CF 622F The Sum of the k-th Powers——拉格朗日插值
题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...
- [题解] CF622F The Sum of the k-th Powers
CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...
- 解题:CF622F The Sum of the k-th Powers
题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...
- 「CF622F」The Sum of the k-th Powers「拉格朗日插值」
题意 求\(\sum_{i=1}^n i^k\),\(n \leq 10^9,k \leq 10^6\) 题解 观察可得答案是一个\(k+1\)次多项式,我们找\(k+2\)个值带进去然后拉格朗日插值 ...
- Codeforces D. The Sum of the k-th Powers(拉格朗日插值)
题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...
- Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...
- [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
- LeetCode862. Shortest Subarray with Sum at Least K
Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...
随机推荐
- 【Openxml】将Openxml的椭圆弧线arcTo转为Svg的椭圆弧线
本文将介绍如何将OpenXml的actTo转为Svg的弧线(a) OpenXml的artTo 首先下面是一段OpenXml的arcTo弧线 <arcTo wR="152403" ...
- wpf中INotifyPropertyChanged的用法
using System;using System.Collections.Generic;using System.ComponentModel;using System.Linq;using Sy ...
- Servlet学习笔记(三)之HttpServletResponse
init() 方法中参数 ServletConfig 对象使用 通过ServletConfig 获得 ServletContext对象 使用 HttpServletRequest 与HttpServl ...
- JavaScript之创建对象的模式
使用Object的构造函数可以创建对象或者使用对象字面量来创建单个对象,但是这些方法有一个明显的缺点:使用相同的一个接口创建很多对象,会产生大量的重复代码. (一)工厂模式 这种模式抽象了创建具体对象 ...
- Aggressor Script 开发-Powershell 免杀
转载https://www.jianshu.com/p/f158a9d6bdcf 前言 在接触到Cobalt Strike的时候就知道有各种插件,想象着那天也可以自己学习编写一个.在之前分析Cobal ...
- ReScript 与 TypeScript,谁是前端圈的“当红辣子鸡”
摘要: ReScript 和 TypeScript 的出现都是为了更好地使用JavaScript,但两者还是有很大的不同. 本文分享自华为云社区<[云创共驻]ReScript 和 TypeScr ...
- Object-源码
Object的结构 类构造器 一个类必须要有一个构造器的存在 , Object类源码中,是看不到构造器的,系统会自动添加一个无参构造器. Object obj = new Object(): equa ...
- MFGTool2 的使用
环境 宿主机平台:Ubuntu 16.04.6 目标机:iMX6ULL开发板 MFGTool 2.7 参考:https://www.cnblogs.com/helloworldtoyou/p/6053 ...
- MongoDB(3)- Database 数据库相关
Database MongoDB 将数据记录存储为文档(特别是 BSON 文档) 这些文档在集合中聚集在一起 数据库存储一个或多个文档集合. 在 MongoDB 里面存在数据库的概念,但没有模式 Sh ...
- TCP头部格式和封装
文章目录 12.3 TCP头部和封装 12.3.1 端口号 12.3.2 序列号 12.3.3 头部长度 12.3.4 相关控制位 12.3.5 窗口大小 12.3.6 校验和 12.3.7 选项字段 ...