正题

题目链接:https://www.luogu.com.cn/problem/CF622F


题目大意

给出\(n,k\),求

\[\sum_{i=1}^ni^k
\]

解题思路

很经典的拉格朗日差值问题

这个东西显然是可以化成一个\(k+1\)次的多项式的,所以我可以直接代\(k+2\)个点插出值来。看到顺眼先把\(n,k\)互换一下。

先上一个要刻在\(DNA\)里的公式

\[f(k)=\sum_{i=1}^ny_i\prod_{j=1,j\neq i}^n\frac{x_j-k}{x_i-x_j}
\]

发现这个直接计算是\(O(n^2)\)的搞不定。

上面的\(x_j-k\)挺好优化的,分别做一个前后缀积就好了,但是麻烦的是\(x_i-x_j\)。我们可以利用\(x_i\)是连续的这个性质,我们只需要带入\(x_i\in[1,n+2]\)的点即可。

此时\(x_i-x_j\)就变为了两段阶乘分别是\(\prod_{j=1}^{i-1}\frac{1}{i-j}\)和\(\prod_{j=i+1}^j\frac{1}{i-j}\)。预处理逆元前缀和就好了,需要注意的是因为后面那个式子\(i-j\)是负数所以我们需要判断一下如果\(n-i\)是奇数就要取反。

线性筛\(y_i\)的话时间复杂度\(O(n)\),懒得话直接快速幂\(O(n\log k)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=1e6+10,P=1e9+7;
ll n,k,ans,inv[N],suf[N],pre[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
signed main()
{
scanf("%lld%lld",&k,&n);
// if(k<=n+2){
// for(ll i=1;i<=k;i++)
// ans=(ans+power(i,n))%P;
// printf("%d\n",ans);
// return 0;
// }
inv[1]=1;n+=2;
for(ll i=2;i<=n;i++)
inv[i]=P-(P/i)*inv[P%i]%P;
inv[0]=1;
for(ll i=1;i<=n;i++)
inv[i]=inv[i-1]*inv[i]%P;
ll tmp=1;pre[0]=suf[n+1]=1;
for(ll i=1;i<=n;i++)pre[i]=pre[i-1]*(k-i)%P;
for(ll i=n;i>=1;i--)suf[i]=suf[i+1]*(k-i)%P;
for(ll i=1,p=0;i<=n;i++){
(p+=power(i,n-2))%=P;
ans+=p*pre[i-1]%P*suf[i+1]%P*inv[i-1]%P*(((n-i)&1)?P-inv[n-i]:inv[n-i])%P;
ans=ans%P;
}
printf("%lld\n",(ans+P)%P);
return 0;
}

CF622F-The Sum of the k-th Powers【拉格朗日插值】的更多相关文章

  1. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  2. CF 622 F The Sum of the k-th Powers —— 拉格朗日插值

    题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...

  3. CF 622F The Sum of the k-th Powers——拉格朗日插值

    题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...

  4. [题解] CF622F The Sum of the k-th Powers

    CF622F The Sum of the k-th Powers 题意:给\(n\)和\(k\),让你求\(\sum\limits_{i = 1} ^ n i^k \ mod \ 10^9 + 7\ ...

  5. 解题:CF622F The Sum of the k-th Powers

    题面 TJOI2018出CF原题弱化版是不是有点太过分了?对,就是 TJOI2018 教科书般的亵渎 然而我这个问题只会那个题的范围的m^3做法 回忆一下1到n求和是二次的,平方求和公式是三次的,立方 ...

  6. 「CF622F」The Sum of the k-th Powers「拉格朗日插值」

    题意 求\(\sum_{i=1}^n i^k\),\(n \leq 10^9,k \leq 10^6\) 题解 观察可得答案是一个\(k+1\)次多项式,我们找\(k+2\)个值带进去然后拉格朗日插值 ...

  7. Codeforces D. The Sum of the k-th Powers(拉格朗日插值)

    题目描述: The Sum of the k-th Powers time limit per test 2 seconds memory limit per test 256 megabytes i ...

  8. Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法

    F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...

  9. [Swift]LeetCode862. 和至少为 K 的最短子数组 | Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

  10. LeetCode862. Shortest Subarray with Sum at Least K

    Return the length of the shortest, non-empty, contiguous subarray of A with sum at least K. If there ...

随机推荐

  1. MongoDB 数据库创建删除、表(集合) 创建删除、数据增删改查

    使用数据库.创建数据库 use student 如果真的想把这个数据库创建成功,那么必须插入一个数据. 数据库中不能直接插入数据,只能往集合(collections)中插入数据.不需要专门创建集合,只 ...

  2. 详解C#中 Thread,Task,Async/Await,IAsyncResult的那些事儿

    说起异步,Thread,Task,async/await,IAsyncResult 这些东西肯定是绕不开的,今天就来依次聊聊他们 1.线程(Thread) 多线程的意义在于一个应用程序中,有多个执行部 ...

  3. 【springboot】 junit 测试

    参考:https://blog.csdn.net/u012100371/article/details/77206863 @RunWith(SpringJUnit4ClassRunner.class) ...

  4. QT 自定义控件 以及信号和槽的使用

    自定义login 控件 Login头文件 #ifndef LOGIN_H #define LOGIN_H #include <QWidget> namespace Ui { class L ...

  5. 【转载】vim 中文帮助手册的安装

    本文出处http://hi.baidu.com/bkhcvzdvmjfkpyr/item/9c238224c1a69498b6326360 vim自带的帮助手册是英文的, 对平时编程的人来说没有多大阅 ...

  6. SpringCloud之网关zuul

    1.微服务网关介绍和使用场景 1)什么是网关 API Gateway,是系统的唯一对外的入口,介于客户端和服务器端之间的中间层,处理非业务功能 提供路由请求.鉴权.监控.缓存.限流等功能 统一接入 智 ...

  7. ThreadLocal 的应用

    ThreadLocal set() 的只能是当前线程能使用的值 public class TestTreadLocal{ public static final ThreadLocal threadS ...

  8. Java程序设计学习笔记(三)—— IO

    时间:2016-3-24 11:02 --IO流(Input/Output)     IO流用来处理设备之间的数据传输.    Java对数据的操作是通过流的方式.    Java对于操作流的对象都在 ...

  9. RabbitMq内存分页

  10. validity属性返回对象中的属性值