Lettuce 是一个 Redis 连接池,和 Jedis 不一样的是,Lettuce 是主要基于 Netty 以及 ProjectReactor 实现的异步连接池。由于基于 ProjectReactor,所以可以直接用于 spring-webflux 的异步项目,当然,也提供了同步接口。

在我们的微服务项目中,使用了 Spring Boot 以及 Spring Cloud。并且使用了 spring-data-redis 作为连接 Redis 的库。并且连接池使用的是 Lettuce。同时,我们线上的 JDK 是 OpenJDK 11 LTS 版本,并且每个进程都打开了 JFR 记录。关于 JFR,可以参考这个系列:JFR 全解

在 Lettuce 6.1 之后,Lettuce 也引入了基于 JFR 的监控事件。参考:events.flight-recorder

1. Redis 连接相关事件

  • ConnectEvent:当尝试与 Redis 建立连接之前,就会发出这个事件。
  • ConnectedEvent连接建立的时候会发出的事件,包含建立连接的远程 IP 与端口以及使用的 Redis URI 等信息,对应 Netty 其实就是 ChannelHandler 中的 channelActive 回调一开始就会发出的事件。
  • ConnectionActivatedEvent:在完成 Redis 连接一系列初始化操作之后(例如 SSL 握手,发送 PING 心跳命令等等),这个连接可以用于执行 Redis 命令时发出的事件
  • ConnectionDeactivatedEvent:在没有任何正在处理的命令并且 isOpen() 是 false 的情况下,连接就不是活跃的了,准备要被关闭。这个时候就会发出这个事件。
  • DisconnectedEvent连接真正关闭或者重置时,会发出这个事件。
  • ReconnectAttemptEvent:Lettuce 中的 Redis 连接会被维护为长连接,当连接丢失,会自动重连,需要重连的时候,会发出这个事件。
  • ReconnectFailedEvent:当重连并且失败的时候的时候,会发出这个事件。

2. Redis 集群相关事件

  • AskRedirectionEvent:针对 Redis slot 处于迁移状态时会返回 ASK,这时候会发出这个事件。
  • MovedRedirectionEvent:针对 Redis slot 不在当前节点上时会返回 MOVED,这时候会发出这个事件。
  • TopologyRefreshEvent:如果启用了集群拓补刷新的定时任务,在查询集群拓补的时候,就会发出这个事件。但是,这个需要在配置中开启定时检查集群拓补的任务,参考 cluster-topology-refresh
  • ClusterTopologyChangedEvent:当 Lettuce 发现 Redis 集群拓补发生变化的时候,就会发出这个事件。

3. Redis 命令相关事件

  • CommandLatencyEvent:Lettuce 会统计每个命令的响应时间,并定时发出这个事件。这个也是需要手动配置开启的,后面会提到如何开启。
  • CommandStartedEvent开始执行某一指令的时候会发出这个事件。
  • CommandSucceededEvent指令执行成功的时候会发出这个事件。
  • CommandFailedEvent指令执行失败的时候会发出这个事件。

Lettuce 的监控是基于事件分发与监听机制的设计,其核心接口是 EventBus:

EventBus.java

public interface EventBus {
// 获取 Flux,通过 Flux 订阅,可以允许多个订阅者
Flux<Event> get();
// 发布事件
void publish(Event event);
}

其默认实现为 DefaultEventBus

public class DefaultEventBus implements EventBus {
private final DirectProcessor<Event> bus;
private final FluxSink<Event> sink;
private final Scheduler scheduler;
private final EventRecorder recorder = EventRecorder.getInstance(); public DefaultEventBus(Scheduler scheduler) {
this.bus = DirectProcessor.create();
this.sink = bus.sink();
this.scheduler = scheduler;
} @Override
public Flux<Event> get() {
//如果消费不过来直接丢弃
return bus.onBackpressureDrop().publishOn(scheduler);
} @Override
public void publish(Event event) {
//调用 recorder 记录
recorder.record(event);
//调用 recorder 记录之后,再发布事件
sink.next(event);
}
}

在默认实现中,我们发现发布一个事件首先要调用 recorder 记录,之后再放入 FluxSink 中进行事件发布。目前 recorder 有实际作用的实现即基于 JFR 的 JfrEventRecorder.查看源码:

JfrEventRecorder

public void record(Event event) {
LettuceAssert.notNull(event, "Event must not be null");
//使用 Event 创建对应的 JFR Event,之后直接 commit,即提交这个 JFR 事件到 JVM 的 JFR 记录中
jdk.jfr.Event jfrEvent = createEvent(event);
if (jfrEvent != null) {
jfrEvent.commit();
}
} private jdk.jfr.Event createEvent(Event event) {
try {
//获取构造器,如果构造器是 Object 的构造器,代表没有找到这个 Event 对应的 JFR Event 的构造器
Constructor<?> constructor = getEventConstructor(event);
if (constructor.getDeclaringClass() == Object.class) {
return null;
}
//使用构造器创建 JFR Event
return (jdk.jfr.Event) constructor.newInstance(event);
} catch (ReflectiveOperationException e) {
throw new IllegalStateException(e);
}
} //Event 对应的 JFR Event 构造器缓存
private final Map<Class<?>, Constructor<?>> constructorMap = new HashMap<>(); private Constructor<?> getEventConstructor(Event event) throws NoSuchMethodException {
Constructor<?> constructor;
//简而言之,就是查看缓存 Map 中是否存在这个 class 对应的 JFR Event 构造器,有则返回,没有则尝试发现
synchronized (constructorMap) {
constructor = constructorMap.get(event.getClass());
}
if (constructor == null) { //这个发现的方式比较粗暴,直接寻找与当前 Event 的同包路径下的以 Jfr 开头,后面跟着当前 Event 名称的类是否存在
//如果存在就获取他的第一个构造器(无参构造器),不存在就返回 Object 的构造器
String jfrClassName = event.getClass().getPackage().getName() + ".Jfr" + event.getClass().getSimpleName(); Class<?> eventClass = LettuceClassUtils.findClass(jfrClassName); if (eventClass == null) {
constructor = Object.class.getConstructor();
} else {
constructor = eventClass.getDeclaredConstructors()[0];
constructor.setAccessible(true);
} synchronized (constructorMap) {
constructorMap.put(event.getClass(), constructor);
}
} return constructor;
}

发现这块代码并不是很好,每次读都要获取锁,所以我做了点修改并提了一个 Pull Request:reformat getEventConstructor for JfrEventRecorder not to synchronize for each read

由此我们可以知道,一个 Event 是否有对应的 JFR Event 通过查看是否有同路径的以 Jfr 开头后面跟着自己名字的类即可。目前可以发现:

  • io.lettuce.core.event.connection 包:

    • ConnectedEvent -> JfrConnectedEvent
    • ConnectEvent -> JfrConnectedEvent
    • ConnectionActivatedEvent -> JfrConnectionActivatedEvent
    • ConnectionCreatedEvent -> JfrConnectionCreatedEvent
    • ConnectionDeactivatedEvent -> JfrConnectionDeactivatedEvent
    • DisconnectedEvent -> JfrDisconnectedEvent
    • ReconnectAttemptEvent -> JfrReconnectAttemptEvent
    • ReconnectFailedEvent -> JfrReconnectFailedEvent
  • io.lettuce.core.cluster.event 包:
    • AskRedirectionEvent -> JfrAskRedirectionEvent
    • ClusterTopologyChangedEvent -> JfrClusterTopologyChangedEvent
    • MovedRedirectionEvent -> JfrMovedRedirectionEvent
    • AskRedirectionEvent -> JfrTopologyRefreshEvent
  • io.lettuce.core.event.command 包:
    • CommandStartedEvent -> 无
    • CommandSucceededEvent -> 无
    • CommandFailedEvent -> 无
  • io.lettuce.core.event.metrics 包:、
    • CommandLatencyEvent -> 无

我们可以看到,当前针对指令,并没有 JFR 监控,但是对于我们来说,指令监控反而是最重要的。我们考虑针对指令相关事件添加 JFR 对应事件

如果对 io.lettuce.core.event.command 包下的指令事件生成对应的 JFR,那么这个事件数量有点太多了(我们一个应用实例可能每秒执行好几十万个 Redis 指令)。所以我们倾向于针对 CommandLatencyEvent 添加 JFR 事件。

CommandLatencyEvent 包含一个 Map:

private Map<CommandLatencyId, CommandMetrics> latencies;

其中 CommandLatencyId 包含 Redis 连接信息,以及执行的命令。CommandMetrics 即时间统计,包含:

  • 收到 Redis 服务器响应的时间指标,通过这个判断是否是 Redis 服务器响应慢。
  • 处理完 Redis 服务器响应的时间指标,可能由于应用实例过忙导致响应一直没有处理完,通过这个与收到 Redis 服务器响应的时间指标对比判断应用处理花的时间。

这两个指标都包含如下信息:

  • 最短时间
  • 最长时间
  • 百分位时间,默认是前 50%,前 90%,前 95%,前 99%,前 99.9%,对应源码:MicrometerOptions: public static final double[] DEFAULT_TARGET_PERCENTILES = new double[] { 0.50, 0.90, 0.95, 0.99, 0.999 };

我们想要实现针对每个不同 Redis 服务器每个命令都能通过 JFR 查看一段时间内响应时间指标的统计,可以这样实现:

package io.lettuce.core.event.metrics;

import jdk.jfr.Category;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.StackTrace; @Category({ "Lettuce", "Command Events" })
@Label("Command Latency Trigger")
@StackTrace(false)
public class JfrCommandLatencyEvent extends Event {
private final int size; public JfrCommandLatencyEvent(CommandLatencyEvent commandLatencyEvent) {
this.size = commandLatencyEvent.getLatencies().size();
commandLatencyEvent.getLatencies().forEach((commandLatencyId, commandMetrics) -> {
JfrCommandLatency jfrCommandLatency = new JfrCommandLatency(commandLatencyId, commandMetrics);
jfrCommandLatency.commit();
});
}
}
package io.lettuce.core.event.metrics;

import io.lettuce.core.metrics.CommandLatencyId;
import io.lettuce.core.metrics.CommandMetrics;
import jdk.jfr.Category;
import jdk.jfr.Event;
import jdk.jfr.Label;
import jdk.jfr.StackTrace; import java.util.concurrent.TimeUnit; @Category({ "Lettuce", "Command Events" })
@Label("Command Latency")
@StackTrace(false)
public class JfrCommandLatency extends Event {
private final String remoteAddress;
private final String commandType;
private final long count;
private final TimeUnit timeUnit;
private final long firstResponseMin;
private final long firstResponseMax;
private final String firstResponsePercentiles;
private final long completionResponseMin;
private final long completionResponseMax;
private final String completionResponsePercentiles; public JfrCommandLatency(CommandLatencyId commandLatencyId, CommandMetrics commandMetrics) {
this.remoteAddress = commandLatencyId.remoteAddress().toString();
this.commandType = commandLatencyId.commandType().toString();
this.count = commandMetrics.getCount();
this.timeUnit = commandMetrics.getTimeUnit();
this.firstResponseMin = commandMetrics.getFirstResponse().getMin();
this.firstResponseMax = commandMetrics.getFirstResponse().getMax();
this.firstResponsePercentiles = commandMetrics.getFirstResponse().getPercentiles().toString();
this.completionResponseMin = commandMetrics.getCompletion().getMin();
this.completionResponseMax = commandMetrics.getCompletion().getMax();
this.completionResponsePercentiles = commandMetrics.getCompletion().getPercentiles().toString();
}
}

这样,我们就可以这样分析这些事件:

首先在事件浏览器中,选择 Lettuce -> Command Events -> Command Latency,右键使用事件创建新页:

在创建的事件页中,按照 commandType 分组,并且将感兴趣的指标显示到图表中:

针对这些修改,我也向社区提了一个 Pull Requestfix #1820 add JFR Event for Command Latency

在 Spring Boot 中(即增加了 spring-boot-starter-redis 依赖),我们需要手动打开 CommandLatencyEvent 的采集:

@Configuration(proxyBeanMethods = false)
@Import({LettuceConfiguration.class})
//需要强制在 RedisAutoConfiguration 进行自动装载
@AutoConfigureBefore(RedisAutoConfiguration.class)
public class LettuceAutoConfiguration {
}
import io.lettuce.core.event.DefaultEventPublisherOptions;
import io.lettuce.core.metrics.DefaultCommandLatencyCollector;
import io.lettuce.core.metrics.DefaultCommandLatencyCollectorOptions;
import io.lettuce.core.resource.DefaultClientResources;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration; import java.time.Duration; @Configuration(proxyBeanMethods = false)
public class LettuceConfiguration {
/**
* 每 10s 采集一次命令统计
* @return
*/
@Bean
public DefaultClientResources getDefaultClientResources() {
DefaultClientResources build = DefaultClientResources.builder()
.commandLatencyRecorder(
new DefaultCommandLatencyCollector(
//开启 CommandLatency 事件采集,并且配置每次采集后都清空数据
DefaultCommandLatencyCollectorOptions.builder().enable().resetLatenciesAfterEvent(true).build()
)
)
.commandLatencyPublisherOptions(
//每 10s 采集一次命令统计
DefaultEventPublisherOptions.builder().eventEmitInterval(Duration.ofSeconds(10)).build()
).build();
return build;
}
}

微信搜索“我的编程喵”关注公众号,每日一刷,轻松提升技术,斩获各种offer

这个 Redis 连接池的新监控方式针不戳~我再加一点佐料的更多相关文章

  1. Go语言之从0到1实现一个简单的Redis连接池

    Go语言之从0到1实现一个简单的Redis连接池 前言 最近学习了一些Go语言开发相关内容,但是苦于手头没有可以练手的项目,学的时候理解不清楚,学过容易忘. 结合之前组内分享时学到的Redis相关知识 ...

  2. golang开发:类库篇(二) Redis连接池的使用

    为什么要使用连接池 一个数据库服务器只拥有有限的连接资源,一旦所有的连接资源都在使用,那么其它需要连接的资源就只能等待释放连接资源.所以,在连接资源有限的情况下,提高单位时间的连接的使用效率,缩短连接 ...

  3. Redis 连接池的问题

      目录 Redis 连接池的问题    1 1.    前言    1 2.解决方法    1     前言 问题描述:Redis跑了一段时间之后,出现了以下异常. Redis Timeout ex ...

  4. 红眼技术博客 » redis连接池红眼技术博客 » redis连接池

    红眼技术博客 » redis连接池 redis连接池

  5. redis连接池操作

    /** * @类描述 redis 工具 * @功能名 POJO * @author zxf * @date 2014年11月25日 */public final class RedisUtil { p ...

  6. java操作redis redis连接池

    redis作为缓存型数据库,越来越受到大家的欢迎,这里简单介绍一下java如何操作redis. 1.java连接redis java通过需要jedis的jar包获取Jedis连接. jedis-2.8 ...

  7. 三:Redis连接池、JedisPool详解、Redisi分布式

    单机模式: package com.ljq.utils; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; ...

  8. 压测过程中,获取不到redis连接池,发现redis连接数高

    说明:图片截得比较大,浏览器放大倍数看即可(涉及到隐私,打了码,请见谅,如果有疑问,欢迎骚扰). 最近在压测过程中,出现获取不到redis连接池的问题 xshell连接redis服务器,查看连接数,发 ...

  9. Redis连接池

    package com.lee.utils; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; impor ...

随机推荐

  1. Python之数值运算(基础篇)

    1,类型 int类型(整数型).float类型(浮点型,小数型).bool布尔值(True 或者 Fasle) str类型(字符串).list类型(列表).tuple类型(元组).set类型(集合), ...

  2. elk 日志收集 filebeat 集群搭建 php业务服务日志 nginx日志 json 7.12版本 ELK 解决方案

    难的不是技术,难的是业务.熟悉业务流程才是最难的. 其实搜索进来的每一个人的需求不一样,希望你能从我的这篇文章里面收获到. 建议还是看官方文档,更全面一些. 一.背景 1,收集nginx  acces ...

  3. 用Spingboot获得微信小程序的Code以及openid和sessionkey

    ​ 这篇文章主要写的是怎么用spingboot来获取微信小程序的Code以及openid和sessionke,我觉得已经很详细了 我们要获得openid和sessionkey,就必须先要获得code, ...

  4. elementui——表格的相同内容单元格合并

    在今天工作中遇到了相同单元格需要合并的一个需求,实现记录如下. 实现效果: 任务要求: 对表中体系这一列相同的体系进行合并. 思路:定义一个空数组:[]定义一个变量:0遍历数据如果有相同数据 在空数组 ...

  5. hive学习笔记之十一:UDTF

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  6. 『动善时』JMeter基础 — 54、JMeter聚合报告详解

    目录 1.聚合报告介绍 2.聚合报告界面详解 3.聚合报告中信息点说明 (1)百分位数的说明 (2)吞吐量说明 提示:聚合报告组件的使用和察看结果树组件的使用方式相同.本篇文章主要是详细的介绍一下聚合 ...

  7. mybatis框架学习第一天

    三层架构: 表现层:用于展示数据 业务层:处理业务需求 持久层:和数据库交互的 3.持久层技术解决方案: JDBC技术: Connecction PreparedStatement ResultSet ...

  8. Java和C#语法对比(转)

        Java C# 访问修饰符 public 修饰类.接口.变量.方法. 对所有类可见. 修饰类.接口.变量.方法. 对所有类可见.   internal 无. 修饰类.接口.变量.方法. 类,接 ...

  9. IBM刀箱服务器的SW

    刀箱交换机说明: 1.刀箱交换机可以看到的24个口都是ext端口,其中因为授权原因,只激活了前10个端口. 2.交换机配置中的inta端口为服务器直接连接的端口,inta1-inta14,这些都是对应 ...

  10. java基础---java8后新特性

    1. java9 新特性 模块化的使用 减少内存的开销. 可简化各种类库和大型应用的开发和维护. 安全性,可维护性,提高性能. 在 module-info.java 文件中,我们可以用新的关键词mod ...