Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP(2021-POP-SOSP-文献阅读笔记)
读者
这篇文章来自2021的SOSP,单位是斯坦福大学和微软。选该文章的理由有二,一是资源分配的主题较为相关;二是文章结构、语言很清晰,读起来很舒服。
本文的中心思想可以概括为:分化瓦解,各个击破。即,用线性规划的方式解决资源分配问题太昂贵,而启发式算法难以达到最优,且缺乏可扩展性(适应范围小,一改条件就失效)。所以该文通过将原始LP重写,得到各个部分的小LP,分别求解再组合。
注:以下翻译主要来自百度翻译(https://fanyi.baidu.com)和手动修正。
摘要
许多计算机系统中的资源分配问题都可以表述为数学优化问题。然而,对于具有严格SLA的大型问题,使用现成的求解器来寻找这些问题的精确解决方案往往很难,这导致系统设计师依赖廉价的启发式算法。然而,我们观察到,许多分配问题是颗粒的:它们由大量的客户机和资源组成,每个客户机请求的资源只占资源总数的一小部分,客户机可以互换使用不同的资源。对于这些问题,我们提出了一种替代方法,该方法重用原始优化问题公式,并导致比特定领域的启发式方法更好的分配。我们的技术是分区优化问题(Partitioned Optimization Problems,POP),它将问题随机分解为更小的问题(系统中有一部分客户端和资源),并将生成的子分配合并为所有客户端的全局分配。我们提供了理论和经验证据来解释为什么随机划分效果很好。在我们的实验中,与现有的集群调度、流量工程和负载平衡系统相比,POP实现了在最优解的1.5%范围以内,数个数量级的运行时间改进。
Solving Large-Scale Granular Resource Allocation Problems Efficiently with POP(2021-POP-SOSP-文献阅读笔记)的更多相关文章
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- hdu 3288 Resource Allocation
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=3288 Resource Allocation Description HDU-Sailormoon i ...
- Lessons learned developing a practical large scale machine learning system
原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...
- 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 2016.10.06 官方 ...
- 快速高分辨率图像的立体匹配方法Effective large scale stereo matching
<Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...
- Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)
文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习
Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...
- [C12] 大规模机器学习(Large Scale Machine Learning)
大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...
- Spark动态资源分配-Dynamic Resource Allocation
微信搜索lxw1234bigdata | 邀请体验:数阅–数据管理.OLAP分析与可视化平台 | 赞助作者:赞助作者 Spark动态资源分配-Dynamic Resource Allocation S ...
随机推荐
- 常用字符的ASCII码
字母 ASCII码 十进制数 0 00110000 48 9 00111001 57 A 01000001 ...
- 一段关于java NIO server端接受客户端socket连接;演示了关于channel,selector等组件的整合使用
public class ReactorDemo { public static void main(String[] args) throws IOException { ServerSocketC ...
- 通俗易懂详解iptables
防火墙相关概念 从逻辑上讲.防火墙可以大体分为主机防火墙和网络防火墙. 主机防火墙:针对于单个主机进行防护. 网络防火墙:往往处于网络入口或边缘,针对于网络入口进行防护,服务于防火墙背后的本地局域网. ...
- Flink 如何通过2PC实现Exactly-once语义 (源码分析)
Flink通过全局快照能保证内部处理的Exactly-once语义 但是端到端的Exactly-once还需要下游数据源配合,常见的通过幂等或者二阶段提交这两种方式保证 这里就来分析一下Sink二阶段 ...
- Avoiding the Backup of Online Redo Logs
Although it may seem that you should back up online redo logs along with the datafiles and control f ...
- SpringBoot前后端数组交互
前端 后端 Gitee地址 https://gitee.com/zhuayng/foundation-study.git 参考 https://blog.csdn.net/qq_34091758/ar ...
- MySQL server has gone away 异常
原因 一种可能是发送的SQL语句太长,以致超过了max_allowed_packet的大小,如果是这种原因,你只要修改my.cnf,加大max_allowed_packet的值即可. 还有一种可能是因 ...
- redhat更改yum源及安装PHP环境
redhat更新yum源 删除同RHEL一同安装的yum源 rpm -qa|grep yum #查看本地yum yum list | wc -l #看个数 yum install pip #看现象 r ...
- redis集群升级,数据迁移及校验
本次由于安全漏洞原因,需要降redis3升级为redis6,涉及到数据迁移及校验等,用阿里redis-shake迁移工具迁移,并用阿里RedisFullCheck工具进行数据比对 一.新redis安装 ...
- action标签中method={1}怎么理解
其实用到method={数字}的时候,相应的前面的action是要出现*通配符来搭配的.比如一个小例子:<action name="user_*" class="U ...