有向图子图 DAG 数量
考虑 \(\tt DP\),朴素的想法是令 \(f_S\) 表示 \(S\) 这个导出子图将边定向集合构成 \(\tt DAG\) 的方案数。
转移可以考虑剥去所有入度为 \(0\) 的点,那么我们就需要得到仅存在 \(T\) 这个子集为 \(S\) 中入度为 \(0\) 的点的方法。
直接做是困难的,考虑容斥。
强制钦定 \(T\) 这个子集为 \(S\) 中入度为 \(0\) 的点,其他的点不管,\(T \rightarrow S - T\) 的边显然可以连或不连,而 \(S - T \rightarrow T\) 中间的边必须强制不连,这样可以得到转移:
\]
令 \(q_T = 2 ^ {ways(T, S - T)} \times f_{S - T}\),令 \(S\) 中恰好仅有 \(T\) 做为入度为 \(0\) 的点的方案为 \(p_T\),那么有:
\]
根据二项式反演的集合形式,有:
\]
在本题中,我们需要求:
& \sum\limits_{T \subseteq S, T \ne \varnothing} p_T \\
&= \sum\limits_{T \subseteq S, T \ne \varnothing} \sum\limits_{T \subseteq R, R \subseteq S} (-1) ^ {|R| - |T|} q_R \\
&= \sum\limits_{T \subseteq S} (-1) ^ {|T| - 1} q_T
\end{aligned}
\]
因此有 \(f\) 的转移:
\]
此时只要处理出 \(ways(T, S - T)\) 即可做到 \(\mathcal{O}(3 ^ n)\)。
对于每个 \(S\),我们考虑单独计算 \(ways(T, S - T)(T \subseteq S)\),将其简写为 \(w_T\)。
对 \(w_T\) 进行 \(\tt DP\),显然每次只需取出一个在 \(T\) 中的点进行转移即可,可以使用 \(\mathtt{lowbit}, \mathcal{O}(1)\) 取出。
转移只需预处理出 \(w1_{i, S}, w2_{i, S}\) 分别表示 \(i \rightarrow S\) 中的边数和 \(S \rightarrow i\) 中的边数即可,这部分直接暴力。
于是本题可以做到时间复杂度 \(\mathcal{O}(3 ^ n)\),空间复杂度 \(\mathcal{O}(n \times 2 ^ n)\)。
有向图子图 DAG 数量的更多相关文章
- 静态频繁子图挖掘算法用于动态网络——gSpan算法研究
摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的 ...
- COGS 有标号的DAG/强连通图计数
COGS索引 一堆神仙容斥+多项式-- 有标号的DAG计数 I 考虑\(O(n^2)\)做法:设\(f_i\)表示总共有\(i\)个点的DAG数量,转移考虑枚举DAG上所有出度为\(0\)的点,剩下的 ...
- 算法精解:DAG有向无环图
DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用到区块链中,解决了当前区块链的哪些问题. 关键字:DAG,有向无环图,算法,背包,深度优先搜索,栈,BlockCh ...
- 《编译原理》画 DAG 图与求优化后的 4 元式代码- 例题解析
<编译原理>画 DAG 图与求优化后的 4 元式代码- 例题解析 DAG 图(Directed Acylic Graph)无环路有向图 (一)基本块 基本块是指程序中一顺序执行的语句序列, ...
- [转帖]算法精解:DAG有向无环图
算法精解:DAG有向无环图 https://www.cnblogs.com/Evsward/p/dag.html DAG是公认的下一代区块链的标志.本文从算法基础去研究分析DAG算法,以及它是如何运用 ...
- P6295 有标号 DAG 计数
P6295 有标号 DAG 计数 题意 求 \(n\) 个点有标号弱联通 DAG 数量. 推导 设 \(f_i\) 表示 \(i\) 个点有标号 DAG 数量(不保证弱联通),有: \[f(i)=\s ...
- P6295-有标号 DAG 计数【多项式求逆,多项式ln】
正题 题目链接:https://www.luogu.com.cn/problem/P6295 题目大意 求所有\(n\)个点的弱联通\(DAG\)数量. \(1\leq n\leq 10^5\) 解题 ...
- [转]综述论文翻译:A Review on Deep Learning Techniques Applied to Semantic Segmentation
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:htt ...
- 综述论文翻译:A Review on Deep Learning Techniques Applied to Semantic Segmentation
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. 论文地址:http ...
随机推荐
- 一站式元数据治理平台——Datahub入门宝典
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程.作为新一代的元数据管理平台,Datahub在近一年的时间里发展迅猛,大有取代老牌元数据管理工具Atlas之势.国内Datahub ...
- 第六个知识点:我们怎么把NP问题解释成一组可以在多项式内证明的命题
第六个知识点:我们怎么把NP问题解释成一组可以在多项式内证明的命题 原文地址:http://bristolcrypto.blogspot.com/2014/11/52-things-number-6- ...
- 第三十个知识点:大致简述密钥协商中的BR安全定义。
第三十个知识点:大致简述密钥协商中的BR安全定义. 在两方之间建密钥共享是一件密码学中古老的问题.就算只考虑定义也比标准加密困难的多.尽管古典的Diffie-Hellman协议在1976年思路解决了这 ...
- javaScript系列 [27]- DOM
本文将详细介绍DOM相关的知识点,包括但不限于Document文档结构.Node节点.Node节点的类型.Node节点的关系以及DOM的基本操作( 节点的获取.节点的创建.节点的插入.节点的克隆和删除 ...
- Java初学者作业——编写Java程序,实现判断所输入字符的类型(数字、小写字母、大写字母或其他字符)
返回本章节 返回作业目录 需求说明: 编写Java程序,实现判断所输入字符的类型(数字.小写字母.大写字母或其他字符) 实现思路: 声明变量c,用于存储用户输入的字符. 通过Scanner接收用户输入 ...
- C#中的显式转换
大多数编程语言都支持显示转换,也称为强制转换,它与隐式转换相呼应,比如,一般的,整型可以通过隐式转换成浮点型,而浮点型需要通过强制转换成整型: int i = 32; double d = i;//整 ...
- 在 CentOS 7 上安装 GitLab
1. 安装和配置必要的依赖库 sudo yum install -y curl policycoreutils-python openssh-server # the commands below w ...
- [网络编程] 自己构建一个cgi.FieldStorage()的对象
问题描述: 通常cgi.FieldStorage()返回一个类似于Python字典的对象. 在cgi框架中必须通过浏览器发送表单过来才能接受消息 那么我该怎么进行本地调试呢? 或者说在没有搭建好一整套 ...
- java.exe and -classpth or -cp
mydirname=$(dirname $0) java -cp $classes_dir:$lib_dir/*:$config_dir -Doracle.net.wallet_location=${ ...
- Flowable实战(五)表单和流程变量
一.流程变量 流程实例按步骤执行时,需要保存并使用一些数据,在Flowable中,这些数据称为变量(variable). 流程实例可以持有变量,称作流程变量(process variables ...