摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布。BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍。

论文地址:http://proceedings.mlr.press/v37/blundell15.pdf

网络权重的点估计

常规神经网络可以基于MLE或MAP对权重作点估计。

基于MLE(maximum likelihood estimation):

基于MAP(maximum a posteriori):

对权重施加先验,等价于进行正则化。如果施加的是高斯先验,相当于进行L2正则,如果是一个laplace先验,相当于L1正则。

贝叶斯方法

贝叶斯推断在给定训练数据的情况下,计算网络参数的后验概率,理论上可以通过以下方式对样本标签所服从的分布进行预测:

Hinton等人提出对网络权重的贝叶斯后验分布进行变分估计,变分学习寻找参数θ,来最小化分布q(w|θ)和权重真实后验分布之间的KL距离,这里的参数θ可理解为w所服从分布的参数,比如高斯的μ和σ:

这个loss函数就是变分自由能(variational free energy),也称为期望下界(expected lower bound, ELBO)。

可以将loss函数简记为:

损失函数的后半部分代表与数据相关,称之为似然损失,前半部分与先验有关,称为先验损失。该损失也被称为最小描述长度(minimum description length, MDL)

无偏蒙特卡洛梯度

我们使用梯度下降的方式对上述损失进行优化。

在特定的条件下,期望的微分等于微分的期望。

命题1:假设ε服从分布q(ε),令w = t(θ, ε),其中t(θ, ε)是一个确定性函数,假如w的边缘密度q(w|θ)满足q(ε) dε = q(w|θ) dw,那么:

证明:

确定性函数 t(θ, ε)将一个随机噪声和变分后验参数转换为一个变分后验。

,我们可以将命题1用于优化。通过蒙特卡洛采样,可以通过反向传播算法对网络进行优化。

命题1就是所谓的重参数技巧(reparameterization trick)。

变分高斯后验

基于高斯后验的变分学习训练过程如下:

这里就是常规反向传播算法得到的梯度。

基于tensorflow probability的贝叶斯全连接网络示例

import tensorflow as tf
import tensorflow_probability as tfp model = tf.keras.Sequential([
tfp.layers.DenseReparameterization(512, activation=tf.nn.relu),
tfp.layers.DenseReparameterization(10),
]) logits = model(features)
neg_log_likelihood = tf.nn.softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
kl = sum(model.losses)

# loss由两部分构成:(1)负对数似然(2)参数分布与其先验分布(regularizer)之间的KL距离
loss = neg_log_likelihood + kl
train_op = tf.train.AdamOptimizer().minimize(loss)

变分贝叶斯学习(variational bayesian learning)及重参数技巧(reparameterization trick)的更多相关文章

  1. PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)

    本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题.主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separ ...

  2. 变分贝叶斯VBEM 由浅入深

    变分贝叶斯EM指的是变分贝叶斯期望最大化(VBEM, variational Bayes expectation maximization),这种算法基于变分推理,通过迭代寻找最小化KL(Kullba ...

  3. 贝叶斯线性回归(Bayesian Linear Regression)

    贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原 ...

  4. lecture10-模型的结合与全贝叶斯学习

    这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural ne ...

  5. 【原】对频率论(Frequentist)方法和贝叶斯方法(Bayesian Methods)的一个总结

    注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statis ...

  6. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  7. 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)

    概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...

  8. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  9. 贝叶斯方法(Bayesian approach) —— 一种概率解释(probabilistic interpretation)

    1. Bayesian approach 对于多项式拟合问题,我们可通过最小二乘(least squares)的方式计算得到模型的参数,最小二乘法又可视为最大似然(maximum likelihood ...

随机推荐

  1. EmEditor, 在正则使用()匹配后 使用$1 $2进行对括号内的值进行引用

    $1表示第一个括号,$2表示第二个括号,以此类推

  2. 基于Docker的MindSpore安装与使用基础介绍

    技术背景 MindSpore是一款新一代AI开源计算框架,其特色在于:创新编程范式,AI科学家和工程师更易使用,便于开放式创新:该计算框架可满足终端.边缘计算.云全场景需求,能更好保护数据隐私:可开源 ...

  3. 自己整理的acm模板

    第一次上传: 链接:点我下载 大部分常用的模板都弄了,剩下的坑以后再补... 第二次上传: 链接:点我下载 更新内容:新增ST表.分块 第三次上传: 链接:点我下载 更新内容:新增AC自动机,修改权值 ...

  4. Nodejs学习笔记(2) 阻塞/非阻塞实例 与 Nodejs事件

    1. Node.js异步编程的特点 2. 阻塞与非阻塞的实例 2.1 阻塞代码实例 2.2 非阻塞代码实例 3. Node.js的事件驱动 4. 事件循环实例 1. Node.js异步编程的特点 参考 ...

  5. socket 之send和recv原理剖析

    认识TCP socket的发送缓冲区和接收缓冲区 当创建一个TCP socket对象的时候会有一个发送缓冲区和一个接收缓冲区,相当与内存中的一片空间 send原理剖析 send是不是直接把数据发送给服 ...

  6. FIL怎么获得?FIL在哪里购买?

    从一些交易网站可以看到,FIL 这几天有一个比较大的涨幅,这让许多投资 FIL 的朋友大松一口气:FIL,你终于不装睡了.估计许多关注区块链的小伙伴看到消息又要问了:FIL 怎么获得?FIL 在哪里购 ...

  7. Envoy 部署类型

    目录 Envoy 网络拓扑及请求流程 1. 术语 2. 网络拓扑 3. 配置 4. 更高层的架构 5. 请求流程 1. Listener TCP 接收 2. 侦听器过滤器链和网络过滤器链匹配 3.TL ...

  8. AppDomain实现【插件式】开发

    前言: 近期项目中需要实现"热插拔"式的插件程序,例如:定义一个插件接口:由不同开发人员实现具体的插件功能类库:并最终在应用中调用具体插件功能. 此时需要考虑:插件执行的安全性(隔 ...

  9. 【DB宝46】NoSQL数据库之CouchBase简介、集群搭建、XDCR同步及备份恢复

    目录 一. CouchBase概述 1.1.简述 1.2.CouchDB和CouchBase比对 1.2.1.CouchDB和CouchBase的相同之处 1.2.2.CouchDB和CouchBas ...

  10. 更改当前目录--cd

    pwd   显示当前所在的目录路径 cd ../ 回到上一层目录 cd ../../     回到上上层目录 cd /          回到根目录 cd ~         回到当前用户的根目录 c ...