摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布。BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍。

论文地址:http://proceedings.mlr.press/v37/blundell15.pdf

网络权重的点估计

常规神经网络可以基于MLE或MAP对权重作点估计。

基于MLE(maximum likelihood estimation):

基于MAP(maximum a posteriori):

对权重施加先验,等价于进行正则化。如果施加的是高斯先验,相当于进行L2正则,如果是一个laplace先验,相当于L1正则。

贝叶斯方法

贝叶斯推断在给定训练数据的情况下,计算网络参数的后验概率,理论上可以通过以下方式对样本标签所服从的分布进行预测:

Hinton等人提出对网络权重的贝叶斯后验分布进行变分估计,变分学习寻找参数θ,来最小化分布q(w|θ)和权重真实后验分布之间的KL距离,这里的参数θ可理解为w所服从分布的参数,比如高斯的μ和σ:

这个loss函数就是变分自由能(variational free energy),也称为期望下界(expected lower bound, ELBO)。

可以将loss函数简记为:

损失函数的后半部分代表与数据相关,称之为似然损失,前半部分与先验有关,称为先验损失。该损失也被称为最小描述长度(minimum description length, MDL)

无偏蒙特卡洛梯度

我们使用梯度下降的方式对上述损失进行优化。

在特定的条件下,期望的微分等于微分的期望。

命题1:假设ε服从分布q(ε),令w = t(θ, ε),其中t(θ, ε)是一个确定性函数,假如w的边缘密度q(w|θ)满足q(ε) dε = q(w|θ) dw,那么:

证明:

确定性函数 t(θ, ε)将一个随机噪声和变分后验参数转换为一个变分后验。

,我们可以将命题1用于优化。通过蒙特卡洛采样,可以通过反向传播算法对网络进行优化。

命题1就是所谓的重参数技巧(reparameterization trick)。

变分高斯后验

基于高斯后验的变分学习训练过程如下:

这里就是常规反向传播算法得到的梯度。

基于tensorflow probability的贝叶斯全连接网络示例

import tensorflow as tf
import tensorflow_probability as tfp model = tf.keras.Sequential([
tfp.layers.DenseReparameterization(512, activation=tf.nn.relu),
tfp.layers.DenseReparameterization(10),
]) logits = model(features)
neg_log_likelihood = tf.nn.softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
kl = sum(model.losses)

# loss由两部分构成:(1)负对数似然(2)参数分布与其先验分布(regularizer)之间的KL距离
loss = neg_log_likelihood + kl
train_op = tf.train.AdamOptimizer().minimize(loss)

变分贝叶斯学习(variational bayesian learning)及重参数技巧(reparameterization trick)的更多相关文章

  1. PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)

    本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题.主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separ ...

  2. 变分贝叶斯VBEM 由浅入深

    变分贝叶斯EM指的是变分贝叶斯期望最大化(VBEM, variational Bayes expectation maximization),这种算法基于变分推理,通过迭代寻找最小化KL(Kullba ...

  3. 贝叶斯线性回归(Bayesian Linear Regression)

    贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原 ...

  4. lecture10-模型的结合与全贝叶斯学习

    这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural ne ...

  5. 【原】对频率论(Frequentist)方法和贝叶斯方法(Bayesian Methods)的一个总结

    注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statis ...

  6. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  7. 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)

    概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...

  8. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  9. 贝叶斯方法(Bayesian approach) —— 一种概率解释(probabilistic interpretation)

    1. Bayesian approach 对于多项式拟合问题,我们可通过最小二乘(least squares)的方式计算得到模型的参数,最小二乘法又可视为最大似然(maximum likelihood ...

随机推荐

  1. 2019 GDUT Rating Contest II : Problem C. Rest Stops

    题面: C. Rest Stops Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  2. 实验: survivor放不下的对象进入老年代

    实验一: 存活对象包含 小于survivor大小的对象 + 大于survivor的对象 private static final Integer _1MB = 1024 * 1024; /** * - ...

  3. ECMAScript 2017(ES8)新特性简介

    目录 简介 Async函数 共享内存和原子操作 Object的新方法 String的新方法 逗号可以添加到函数的参数列表后面了 简介 ES8是ECMA协会在2017年6月发行的一个版本,因为是ECMA ...

  4. vscode远程连接linux服务器,可视化绘图

    vscode远程连接linux服务器 想要实现的功能和解决方案 实现的功能: windows下直接使用远程linux服务器的python环境和文件来编写和运行py文件, 实时的编写py文件,和可视化绘 ...

  5. Java中的集合Set - 入门篇

    前言 大家好啊,我是汤圆,今天给大家带来的是<Java中的集合Set - 入门篇>,希望对大家有帮助,谢谢 简介 前面介绍了集合List,映射Map,最后再简单介绍下集合Set,相关类如下 ...

  6. 基于SageMath的数学网站——本科毕业开发项目

    1 绪论 1.1研究背景 我国是一个拥有15亿人口的大国.其中,据2017年的统计,全国共有大学生2600万左右.如此数量众多的大学生,都会有着学习基础数理课程的需求.而在高校的数学教学中,教授最多最 ...

  7. 设计Web页面(2)

    1.前面我们新建了一个空白的ASP.NET网页,那么接下来这章我们就讲一下设计Web页面 2.布局页面有两种方法,一种是通过Table表格来布局页面窗体,另一种是通过CSS+DIV来布局窗体,其中作为 ...

  8. Spring Security OAuth 格式化 token 输出

    个性化token 背景 上一篇文章<Spring Security OAuth 个性化token(一)>有提到,oauth2.0 接口默认返回的报文格式如下: {     "ac ...

  9. vm16 安装 || 待检验 || 预测无问题

    vm16 安装 安装 下载 下载地址 管理员运行 安装 其余都点下一步/NEXT 激活 完成

  10. 【笔记】《Redis设计与实现》chapter20 Lua脚本

    chapter20 Lua脚本 Redis从2.6版本开始引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务器端原子地执行多个Redis命令 20.1 ...