摘要:常规的神经网络权重是一个确定的值,贝叶斯神经网络(BNN)中,将权重视为一个概率分布。BNN的优化常常依赖于重参数技巧(reparameterization trick),本文对该优化方法进行概要介绍。

论文地址:http://proceedings.mlr.press/v37/blundell15.pdf

网络权重的点估计

常规神经网络可以基于MLE或MAP对权重作点估计。

基于MLE(maximum likelihood estimation):

基于MAP(maximum a posteriori):

对权重施加先验,等价于进行正则化。如果施加的是高斯先验,相当于进行L2正则,如果是一个laplace先验,相当于L1正则。

贝叶斯方法

贝叶斯推断在给定训练数据的情况下,计算网络参数的后验概率,理论上可以通过以下方式对样本标签所服从的分布进行预测:

Hinton等人提出对网络权重的贝叶斯后验分布进行变分估计,变分学习寻找参数θ,来最小化分布q(w|θ)和权重真实后验分布之间的KL距离,这里的参数θ可理解为w所服从分布的参数,比如高斯的μ和σ:

这个loss函数就是变分自由能(variational free energy),也称为期望下界(expected lower bound, ELBO)。

可以将loss函数简记为:

损失函数的后半部分代表与数据相关,称之为似然损失,前半部分与先验有关,称为先验损失。该损失也被称为最小描述长度(minimum description length, MDL)

无偏蒙特卡洛梯度

我们使用梯度下降的方式对上述损失进行优化。

在特定的条件下,期望的微分等于微分的期望。

命题1:假设ε服从分布q(ε),令w = t(θ, ε),其中t(θ, ε)是一个确定性函数,假如w的边缘密度q(w|θ)满足q(ε) dε = q(w|θ) dw,那么:

证明:

确定性函数 t(θ, ε)将一个随机噪声和变分后验参数转换为一个变分后验。

,我们可以将命题1用于优化。通过蒙特卡洛采样,可以通过反向传播算法对网络进行优化。

命题1就是所谓的重参数技巧(reparameterization trick)。

变分高斯后验

基于高斯后验的变分学习训练过程如下:

这里就是常规反向传播算法得到的梯度。

基于tensorflow probability的贝叶斯全连接网络示例

import tensorflow as tf
import tensorflow_probability as tfp model = tf.keras.Sequential([
tfp.layers.DenseReparameterization(512, activation=tf.nn.relu),
tfp.layers.DenseReparameterization(10),
]) logits = model(features)
neg_log_likelihood = tf.nn.softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
kl = sum(model.losses)

# loss由两部分构成:(1)负对数似然(2)参数分布与其先验分布(regularizer)之间的KL距离
loss = neg_log_likelihood + kl
train_op = tf.train.AdamOptimizer().minimize(loss)

变分贝叶斯学习(variational bayesian learning)及重参数技巧(reparameterization trick)的更多相关文章

  1. PGM学习之六 从有向无环图(DAG)到贝叶斯网络(Bayesian Networks)

    本文的目的是记录一些在学习贝叶斯网络(Bayesian Networks)过程中遇到的基本问题.主要包括有向无环图(DAG),I-Maps,分解(Factorization),有向分割(d-Separ ...

  2. 变分贝叶斯VBEM 由浅入深

    变分贝叶斯EM指的是变分贝叶斯期望最大化(VBEM, variational Bayes expectation maximization),这种算法基于变分推理,通过迭代寻找最小化KL(Kullba ...

  3. 贝叶斯线性回归(Bayesian Linear Regression)

    贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原 ...

  4. lecture10-模型的结合与全贝叶斯学习

    这是Hinton的第10课 这节课有两篇论文可以作为背景或者课外读物<Adaptive mixtures of local experts>和<Improving neural ne ...

  5. 【原】对频率论(Frequentist)方法和贝叶斯方法(Bayesian Methods)的一个总结

    注: 本文是对<IPython Interactive Computing and Visualization Cookbook>一书中第七章[Introduction to statis ...

  6. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  7. 概率图模型(PGM) —— 贝叶斯网络(Bayesian Network)

    概率图模型是图论与概率方法的结合产物.Probabilistic graphical models are a joint probability distribution defined over ...

  8. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  9. 贝叶斯方法(Bayesian approach) —— 一种概率解释(probabilistic interpretation)

    1. Bayesian approach 对于多项式拟合问题,我们可通过最小二乘(least squares)的方式计算得到模型的参数,最小二乘法又可视为最大似然(maximum likelihood ...

随机推荐

  1. go中sync.Mutex源码解读

    互斥锁 前言 什么是sync.Mutex 分析下源码 Lock 位运算 Unlock 总结 参考 互斥锁 前言 本次的代码是基于go version go1.13.15 darwin/amd64 什么 ...

  2. 使用 DD 命令制作 USB 启动盘

    Windows 下有很多很好用的 USB 启动盘制作工具,比如 Rufus,但是 MacOS 下这个类型的工具就少了很多,这里记录下在 MacOS 中用 DD 命令制作 Linux USB 启动盘的操 ...

  3. P1008_三连击(JAVA语言)

    /*  * 题目描述 将1,2,⋯,9共9个数分成3组, 分别组成3个三位数,且使这3个三位数构成1:2:3的比例,试求出所有满足条件的3个三位数. 输入输出格式 输入格式: 木有输入 输出格式: 若 ...

  4. 【Django笔记1】-视图(views)与模板(templates)

    视图(views)与模板(templates) 1,视图(views) ​ 将接收到的数据赋值给模板(渲染),再传递给浏览器.HTML代码可以直接放在views.py(文件名可任意更换),也可以放在t ...

  5. Vite2+Electron仿抖音|vite2.x+electron12+vant3短视频|直播|聊天

    整合vite2+electron12跨平台仿抖音电脑版实战Vite2-ElectronDouYin. 基于vite2.0+electron12+vant3+swiper6+v3popup等技术跨端仿制 ...

  6. 【linux】系统编程-3-system-V IPC 信号量

    目录 前言 5. 信号量 5.1 概念 5.2 工作原理 5.3 操作函数 5.3.1 semget() 5.3.2 semop() 5.3.3 semctl() 5.4 例程 参考: 前言 原文链接 ...

  7. 「HTML+CSS」--自定义按钮样式【002】

    前言 Hello!小伙伴! 首先非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 哈哈 自我介绍一下 昵称:海轰 标签:程序猿一只|C++选手|学生 简介:因C语言结识编程,随后转入计算机 ...

  8. 「HTML+CSS」--自定义按钮样式【003】

    前言 Hello!小伙伴! 首先非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 哈哈 自我介绍一下 昵称:海轰 标签:程序猿一只|C++选手|学生 简介:因C语言结识编程,随后转入计算机 ...

  9. std::thread线程库详解(5)

    目录 目录 前言 信号量 counting_semaphore latch与barrier latch barrier 总结 前言 前面四部分内容已经把目前常用的C++标准库中线程库的一些同步库介绍完 ...

  10. GitlabCI/CD&Kubernetes项目交付流水线实践

    GitlabCI实践 GitLabCI/CD基础概念 为什么要做CI/CD? GitLab CI/CD简介 GitLabCI VS Jenkins 安装部署GitLab服务 GitLabRunner实 ...