前面 使用自旋锁实现了一把锁,(请看 第5篇)

volatile 三大特性: 可见性, 不保证原子性, 禁止指令重排

为了解决 volatile不保证原子性的问题, 引入了原子类, AtomicInteger, 底层是使用了 CAS 直接变成汇编指令操作硬件,从而解决了 原子性的问题

而 Lock 类的底层实现是 AQS 和CAS,

这里使用 AtomicInteger的特性和自旋锁来实现一把 排队自旋锁 锁:

  class AtomicLock {
private AtomicInteger serviceNum = new AtomicInteger();//等待者
private AtomicInteger ticketNum = new AtomicInteger();//排队号 public int atomicLock() {
// 排队号加1
int myTicketNum = ticketNum.getAndIncrement();
//只要 排队号和 等待着的号不同,等待者就一直循环, 如果相同,就返回排队号, 这里相当于加锁成功
while (serviceNum.get() != myTicketNum) {
}
System.out.println(Thread.currentThread().getName() + "加锁成功");
return myTicketNum;
} public void atomicUnlock(int num) {
// 如果要解锁,就将排队号 +1, 并设置回等待者
int next = num + 1;
serviceNum.compareAndSet(num, next);
System.out.println(Thread.currentThread().getName() + "解锁成功");
} static int num = 0;
public static void main(String[] args) throws InterruptedException {
/**
* 这个锁的缺点是: 如果线程很多, 这么多线程都要操作 同一个Atomicinteger, 且为了保证 各个线程的工作缓存中的数据一致性,
* 会频繁的 在工作缓存和 主存之间进行通信,,造成系统总线和主存之间繁重的流量, 进而降低系统的性能
*
* 但是多处理器系统上,每个进程/线程占用的处理器都在读写同一个变量serviceNum ,每次读写操作都必须在多个处理器缓存之间进行缓存同步,
* 这会导致繁重的系统总线和内存的流量,大大降低系统整体的性能。
* 如何解决: 使用 CLH锁和MCS锁
*/
AtomicLock atomicLock = new AtomicLock();
for (int i = 0; i < 10; i++) {
new Thread(() -> {
int j = atomicLock.atomicLock();
System.out.println(Thread.currentThread().getName() + "操作开始: num: " + num);
for (int k = 0; k < 20; k++) {
num++;
}
System.out.println(Thread.currentThread().getName() + "操作结束: num: " + num);
atomicLock.atomicUnlock(j);
},"线程"+i).start();
} TimeUnit.SECONDS.sleep(3);
System.out.println("最终结果num: "+num);
}
}

运行结果:



CLH锁和 MCS锁, 这个是目前写的比较好的博客

https://www.jianshu.com/p/1b1b44e84394

JUC 并发编程--12, 使用AtomicInteger 实现一把锁(排队自旋锁), 代码演示的更多相关文章

  1. Java并发编程:用AQS写一把可重入锁

    Java并发编程:自己动手写一把可重入锁详述了如何用synchronized同步的方式来实现一把可重入锁,今天我们来效仿ReentrantLock类用AQS来改写一下这把锁.要想使用AQS为我们服务, ...

  2. Java并发编程:自己动手写一把可重入锁

    关于线程安全的例子,我前面的文章Java并发编程:线程安全和ThreadLocal里面提到了,简而言之就是多个线程在同时访问或修改公共资源的时候,由于不同线程抢占公共资源而导致的结果不确定性,就是在并 ...

  3. JUC 并发编程--06, 阻塞队列(7种), 阻塞等待 api的 代码验证

    这些队列的 api ,就是添加队列,出队列,检测对首元素, 由于 add()--remove(), offer()--poll(),太简单这里不做验证, 只验证后二组api: 阻塞等待( put()- ...

  4. JUC并发编程学习笔记

    JUC并发编程学习笔记 狂神JUC并发编程 总的来说还可以,学到一些新知识,但很多是学过的了,深入的部分不多. 线程与进程 进程:一个程序,程序的集合,比如一个音乐播发器,QQ程序等.一个进程往往包含 ...

  5. 并发编程 12—— 任务取消与关闭 之 shutdownNow 的局限性

    Java并发编程实践 目录 并发编程 01—— ThreadLocal 并发编程 02—— ConcurrentHashMap 并发编程 03—— 阻塞队列和生产者-消费者模式 并发编程 04—— 闭 ...

  6. JUC并发编程基石AQS之主流程源码解析

    前言 由于AQS的源码太过凝练,而且有很多分支比如取消排队.等待条件等,如果把所有的分支在一篇文章的写完可能会看懵,所以这篇文章主要是从正常流程先走一遍,重点不在取消排队等分支,之后会专门写一篇取消排 ...

  7. 漫画|Linux 并发、竞态、互斥锁、自旋锁、信号量都是什么鬼?(转)

    知乎链接:https://zhuanlan.zhihu.com/p/57354304 1. 锁的由来? 学习linux的时候,肯定会遇到各种和锁相关的知识,有时候自己学好了一点,感觉半桶水的自己已经可 ...

  8. JUC并发编程与高性能内存队列disruptor实战-上

    JUC并发实战 Synchonized与Lock 区别 Synchronized是Java的关键字,由JVM层面实现的,Lock是一个接口,有实现类,由JDK实现. Synchronized无法获取锁 ...

  9. JUC并发编程基石AQS源码之结构篇

    前言 AQS(AbstractQueuedSynchronizer)算是JUC包中最重要的一个类了,如果你想了解JUC提供的并发编程工具类的代码逻辑,这个类绝对是你绕不过的.我相信如果你是第一次看AQ ...

随机推荐

  1. 获取Shell后的操作

    对于Windows系统主机和Linux系统主机,获取Shell后的操作都不同. Windows 当我们通过对Web服务器进行渗透,拿到了该Web服务器的shell后,可以执行系统命令后,我们该如何操作 ...

  2. unresolved external symbol _WinMain@16

    vc下,新建一个win32项目,就写了个main函数,打印hello ,出现了如标题所述的错误 原因: 你建立了一个WINDOWS应用程序,可是你却在入口函数的时候使用main而不是WinMain 解 ...

  3. Spring Cloud Alibaba(7)---docker-compose搭建nacos1.4.0集群

    docker-compose搭建nacos1.4.0集群 有关Nacos之前写过四篇文章. Spring Cloud Alibaba(3)---Nacos概述 Spring Cloud Alibaba ...

  4. 【python】Leetcode每日一题-螺旋矩阵2

    [python]Leetcode每日一题-螺旋矩阵2 [题目描述] 给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix . ...

  5. Python中Socket编程(TCP、UDP)

    1. TCP协议下的如何解决粘包问题 TCP(transport control protocol 传输控制协议)  使用Nagle算法,将多次间隔较小且数据量小的数据,合并成大的数据块:接受端无法识 ...

  6. Git 系列教程(5)- 记录每次更新到仓库

    文件状态 你工作目录下的每一个文件只有两种状态:tracked 或 untracked tracked 已跟踪 tracked 的文件是指那些被纳入了版本控制的文件 在上一次快照中有它们的记录,在工作 ...

  7. 名称空间 反向解析 reverse

  8. 电脑无法开机,用一个U盘先备份C盘部分重要文件并重装Win10系统的教程?

    电脑无法开机,用一个U盘先备份C盘部分重要文件并重装Win10系统的教程.? 这应该是修电脑的万能方法,重装系统能解决绝大多数非硬件导致的电脑故障,但之前要备份一下桌面的一些个人文件.所以想学一下,以 ...

  9. Could not open device at /dev/ipmi0

    Could not open device at /dev/ipmi0 分类: LINUX 2013-09-02 17:01:37   Could not open device at /dev/ip ...

  10. python内存管理总结

    之前在学习与工作中或多或少都遇到关于python内存管理的问题,现在将其梳理一下. python内存管理机制 第0层 操作系统提供的内存管理接口 c实现 第1层 基于第0层操作系统内存管理接口包装而成 ...