Understanding Black-box Predictions via Influence Functions
@article{koh2017understanding,
title={Understanding black-box predictions via influence functions},
author={Koh, Pang Wei and Liang, Percy},
pages={1885--1894},
year={2017}}
概
本文介绍了如果计算(估计)损失关于样本的一些影响因子, 并介绍了一些应用范围.
主要内容
假设样本\(z_1,\ldots, z_n\), \(z_i = (x_i,y_i) \in \mathcal{X} \times \mathcal{Y}\), 通过最小化经验损失
\]
找到最优解.
且假设\(L\)关于样本和参数都是二阶可导且强凸的.
样本重要性分析
显然, 此时给定一个测试样本\(z_{test}\), 其对应的损失为\(L(z_{test},\hat{\theta})\), 那么衡量一个样本重要性的一个重要指标便是, 倘若在移除样本\(z\)的情况下重新训练模型, 对应的参数和损失的变化.
假设在移除样本\(z\)的情况下训练得到的最优参数为\(\hat{\theta}_{-z}\), 并引入
\]
易得\(\hat{\theta}_{-z} = \hat{\theta}_{-\frac{1}{n},z}\).
则
\mathcal{I}_{up, params} (z) := \frac{d \hat{\theta}_{\epsilon, z}}{d \epsilon}|_{\epsilon=0} = -H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z, \hat{\theta}),
\]
其中\(H_{\theta}:= \frac{1}{n} \sum_{i=1}^n \nabla_{\theta}^2 L(z_i, \hat{\theta})\).
我们可以得到, 参数的变化量的一阶近似
\]
进一步, 我们定义损失的变化量
\begin{array}{ll}
\mathcal{I}_{up, loss} (z, z_{test})
& := \frac{dL(z_{test}, \hat{\theta}_{\epsilon, z})}{d \epsilon} |_{\epsilon = 0} \\
& = \nabla_{\theta} L(z_{test}, \hat{\theta})^T \frac{d \hat{\theta}_{\epsilon, z}}{d \epsilon} |_{\epsilon = 0} \\
& = -\nabla_{\theta} L(z_{test}, \hat{\theta})^T H_{\hat{\theta}}^{-1} \nabla_{\theta} L(z, \hat{\theta}).
\end{array}
\]
样本摄动对损失的影响
倘若我们对其中一个样本\(z\)添加一个扰动\(\delta\), 并在新的数据\(z_{\delta}:=(x+\delta,y)\)上训练, 得到模型, 其参数和损失会如何变化?
我们定义
\]
并令\(\hat{\theta}_{z_{\delta},-z}:= \hat{\theta}_{\frac{1}{n}, z_{\delta}, -z}\)
同样可以证明
\frac{d \hat{\theta}_{\epsilon, z_{\delta}, -z}}{d \epsilon} |_{\epsilon=0} = -H_{\hat{\theta}}^{-1} (\nabla_{\theta} L(z_{\delta}, \hat{\theta}) -\nabla_{\theta} L(z, \hat{\theta})).
\]
则
\]
故
\mathcal{I}_{pert, loss}(z, z_{test})^T:= \nabla_{\delta} L(z_{test}, \hat{\theta}_{z_{\delta},-z})^T \approx -\frac{1}{n} \nabla_{\theta} L(z_{test}, \hat{\theta})^T H_{\hat{\theta}}^{-1} \nabla_x \nabla_{\theta} L(z, \hat{\theta}).
\]
注:文章这里没有\(\frac{1}{n}\)且是等号(我卡在这个地方了, 推不出来).
高效计算\(H^{-1}\)
共轭梯度
此时我们不是计算\(H_{\hat{\theta}}^{-1}\), 而是计算\(s:=H_{\hat{\theta}}^{-1}v\), 比如在计算\(\mathcal{I}_{up, loss}\)的时候, \(v=\nabla_{\theta} L(z_{test}, \hat{\theta})\), 则对于固定的\(z_{test}\)想要知道不同的\(z_i\)的影响可以直接用\(s^T \nabla_{\theta} L(z_i, \hat{\theta})\), 避免了重复运算.
即求解
\]
假设第\(k\)步为
\]
则利用精确直线搜索
\]
得
\]
随机估计
这里是估计\(H_{\hat{\theta}}^{-1}\), 为了符号简便省略下表, 因为\(H^{-1}=\sum_{i=0}^{+\infty}(I-H)^i\), 用\(H_j^{-1}= \sum_{i=0}^j (I - H)^i\)表示前\(j+1\)项的和, 易知
\]
我们从样本中均匀挑选, 计算\(\nabla_{\theta}^2 L(z_i, \hat{\theta})\) 作为\(H\)的替代, 则
\]
当然, 处于稳定性的考虑, 我们可以一次性采样多个来作为\(H\)的替代.
一些应用
- 探索模型关于样本的内在解释, 即什么样的样本模型会更加偏好之类的;
- 生成对抗样本;
- 检测目标数据分布和训练分布是否一致;
- 检测训练数据的标签是否正确.
附录
(1)的证明
定义\(\Delta_{\epsilon}:= \hat{\theta}_{\epsilon, z}-\hat{\theta}\), 则
\]
由一阶最优条件可知
0= R(\hat{\theta}_{\epsilon, z}) + \epsilon \nabla_{\theta} L(z, \hat{\theta}_{\epsilon, z}),
\]
把\(\hat{\theta}_{\epsilon, \theta}\)看成自变量(固定\(\epsilon\)), 第二个等式右边是关于这个变量的一个函数, 则其在\(\hat{\theta}_{\epsilon, \theta}=\hat{\theta}\)处的泰勒展式为
\]
故
\]
因为\(\epsilon \rightarrow 0\), \(\Delta_{\epsilon} \rightarrow0\) 易知,
\]
Understanding Black-box Predictions via Influence Functions的更多相关文章
- THE BOX MODEL
Review In this lesson, we covered the four properties of the box model: height and width, padding, b ...
- [JS Compose] 1. Refactor imperative code to a single composed expression using Box
After understanding how Box is, then we are going to see how to use Box to refacotr code, to un-nest ...
- 【54】目标检测之Bounding Box预测
Bounding Box预测(Bounding box predictions) 在上一篇笔记中,你们学到了滑动窗口法的卷积实现,这个算法效率更高,但仍然存在问题,不能输出最精准的边界框.在这个笔记中 ...
- [C6] Andrew Ng - Convolutional Neural Networks
About this Course This course will teach you how to build convolutional neural networks and apply it ...
- Coursera机器学习+deeplearning.ai+斯坦福CS231n
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Wee ...
- directive(指令里的)的compile,pre-link,post-link,link,transclude
The nitty-gritty of compile and link functions inside AngularJS directives The nitty-gritty of comp ...
- What is “Neural Network”
Modern neuroscientists often discuss the brain as a type of computer. Neural networks aim to do the ...
- Angular1.x directive(指令里的)的compile,pre-link,post-link,link,transclude
The nitty-gritty of compile and link functions inside AngularJS directives The nitty-gritty of comp ...
- Convolution Fundamental II
Practical Advice Using Open-Source Implementation We have learned a lot of NNs and ConvNets architec ...
随机推荐
- HBase【操作Java api】
一.导入依赖 创建模块,导入以下依赖,maven默认编译版本是1.5,用1.8编译. pom.xml <dependencies> <dependency> <group ...
- 零基础学习java------day16-----文件,递归,IO流(字节流读写数据)
1.File 1.1 构造方法(只是创建已经存在文件的对象,并不能创建没有的文件) (1)public File(String pathname) (2)public File(String pare ...
- CentOS7 安装配置RocketMQ --主从模式(master-slave)异步复制
机器信息 192.168.119.129 主 192.168.119.128 从 配置host[两台机器] vim /etc/hosts 添加 192.168.119.129 rocketmq-nam ...
- electron搭建开发环境
环境:windons10, nodev14.17.1, vscode md a_star cd a_star npm i -g yarn yarn config set ELECTRON_MIRROR ...
- Spring整合Ibatis之SqlMapClientDaoSupport
前言 HibernateDaoSupport SqlMapClientDaoSupport . 其实就作用而言两者是一样的,都是为提供DAO支持,为访问数据库提供支持. 只不过HibernateD ...
- Output of C++ Program | Set 5
Difficulty Level: Rookie Predict the output of below C++ programs. Question 1 1 #include<iostream ...
- Advanced C++ | Virtual Constructor
Can we make a class constructor virtual in C++ to create polymorphic objects? No. C++ being static t ...
- 使用 ACE 库框架在 UNIX 中开发高性能并发应用
使用 ACE 库框架在 UNIX 中开发高性能并发应用来源:developerWorks 中国 作者:Arpan Sen ACE 开放源码工具包可以帮助开发人员创建健壮的可移植多线程应用程序.本文讨论 ...
- win10安装两台mysql-5.7.31实例
1. 下载 mysql5.7.31 压缩包: (1)百度云下载: 链接:https://pan.baidu.com/s/1jgxfvIYzg8B8ahxU9pF6lg 提取码:fiid (2)官网下载 ...
- shell脚本下载网页图片
和大家分享一个shell脚本写的图片抓取器.使用方法:img_downloader.sh.使用时在shell下输入:./img_downloader.sh www.baidu.com -d image ...