Codeforces 1368E - Ski Accidents(构造+思维)
神仙构造题(不过可能我构造太烂了?)
首先考虑这个奇奇怪怪的 \(\dfrac{4}{7}\),以及这个每个点出度最多为 \(2\) 的条件有何用意。容易发现 \(4=2^2,7=1+2+4\),这启发我们通过某种方式将原图的点集分成三部分。我们考虑构造三个点集 \(A,B,C\) 满足:
- 对于 \(A\) 中的点 \(x\),要么其入度为 \(0\),要么所有连向它的边的另一个端点都属于 \(C\)
- 对于 \(B\) 中的点 \(x\),满足不存在一条边 \((y,x),s.t.y\in B\),且至少存在一条边 \((y,x),s.t.y\in A\)
- 对于 \(C\) 中的点 \(x\),满足至少存在一条边 \((y,x),s.t.y\in B\)。
显然对于任意 \(v\in V\),\(v\) 必然属于 \(A,B,C\) 之一,因此这是一个合法的划分。我们考虑一遍拓扑排序求出 \(col_x\) 表示点 \(x\) 属于 \(A,B,C\) 哪个集合(\(0\) 表示 \(A\),\(1\) 表示 \(B\),\(2\) 表示 \(C\)),然后取 \(col_x=2\) 的点作为答案即可。
为什么?首先我们要说明 \(|C|\le\dfrac{4}{7}n\),不难发现由于每个点度最多为二,因此每个 \(A\) 中的点最多可以产生 \(2\) 个 \(B\) 中的点,因此 \(|B|\le 2|A|\),每个 \(B\) 中的点也最多对应 \(2\) 个 \(C\) 中的点,因此 \(|C|\le 2|B|\),故 \(|C|\le\dfrac{4}{7}n\)。其次我们要说明删除 \(C\) 中的点之后剩余部分满足最多存在一条路径这个限制,不难发现 \(A\) 中点由于在原图中只存在 \(C\) 中点连向它们的边,现在删除了 \(C\),自然入度为 \(0\),同理 \(B\) 中点出度也为零。显然这样的图最长路径只可能是某个 \(A\) 中的点连到某个 \(B\) 中的点,长度最多为 \(1\),符合要求。
时间复杂度线性。
希望今晚 GLBR 不要在 E 放个这样的人类智慧题
const int MAXN=2e5;
const int MAXM=4e5;
int n,m,hd[MAXN+5],to[MAXM+5],nxt[MAXM+5],ec=0,deg[MAXN+5],col[MAXN+5];
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
void clear(){for(int i=1;i<=n;i++) hd[i]=deg[i]=col[i]=0;ec=0;}
void solve(){
scanf("%d%d",&n,&m);clear();
for(int i=1,u,v;i<=m;i++) scanf("%d%d",&u,&v),adde(u,v),deg[v]++;
queue<int> q;for(int i=1;i<=n;i++) if(!deg[i]) q.push(i);
vector<int> res;
while(!q.empty()){
int x=q.front();q.pop();
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];
if(col[x]==1) col[y]=2;
else if(col[x]==0&&!col[y]) col[y]=1;
if(!--deg[y]) q.push(y);
} if(col[x]==2) res.pb(x);
} printf("%d\n",res.size());
for(int x:res) printf("%d ",x);
printf("\n");
}
int main(){
int qu;scanf("%d",&qu);
while(qu--) solve();
return 0;
}
Codeforces 1368E - Ski Accidents(构造+思维)的更多相关文章
- Codeforces 755E:PolandBall and White-Red graph(构造+思维)
http://codeforces.com/contest/755/problem/E 题意:给出n个点和一个距离d,让你在这个n个点的图里面构造一个子图,使得这个子图的直径和补图的直径的较小值为d, ...
- codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)
题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...
- Codeforces 989 P循环节01构造 ABCD连通块构造 思维对云遮月参考系坐标轴转换
A 直接判存不存在连续的三个包含A,B,C就行 /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a ...
- Educational Codeforces Round 53C(二分,思维|构造)
#include<bits/stdc++.h>using namespace std;const int N=1e6+6;int x[N],y[N];int sx,sy,n;char s[ ...
- Codeforces 232A - Cycles (构造 + 思维)
题目链接: 232A - Cycles(点击打开) 题意: 要构成一个存在 \(k\) 个三元环的图,需要多少个点,输出顶点数 \(n\),并输出图. 题解: 题目中的任何图都可以用 \(90\)~ ...
- Codeforces Gym101503E:XOR-omania(构造+思维)
题目链接 题意 给出m个数b,这些数是由n个数a两两异或组成的,问初始的那n个数分别是多少. 思路 存在多组解的情况...原来是个构造题. 考虑这样一种情况:b1 = a1 ^ a2,b2 = a2 ...
- codeforces 389 D. Fox and Minimal path(构造+思维)
题目链接:https://vjudge.net/contest/175446#problem/J 题解:显然要用最多n个点构成的图要使的得到的最短路条数有1e9次个,显然要有几个数相乘容易想到2的几进 ...
- CF1103C Johnny Solving (Codeforces Round #534 (Div. 1)) 思维+构造
题目传送门 https://codeforces.com/contest/1103/problem/C 题解 这个题还算一个有难度的不错的题目吧. 题目给出了两种回答方式: 找出一条长度 \(\geq ...
- Codeforces Global Round 8 E. Ski Accidents(拓扑排序)
题目链接:https://codeforces.com/contest/1368/problem/E 题意 给出一个 $n$ 点 $m$ 边的有向图,每条边由编号较小的点通向编号较大的点,每个点的出度 ...
随机推荐
- java的加载与执行原理详解
java程序从开发到最终运行经历了什么? (31) 编译期: 第一步:在硬盘某个位置(随意),新建一个xxx.java文件 第二步:使用记事本或者其他文本编辑器例如EditPlus打开xxx.java ...
- Java:多线程计数
Java:多线程计数 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 1. CountDownLatch 概念 让一些线程阻塞直到另一些线程完成一系列操作才被唤醒 ...
- mybatis中的#和$的区别 以及 防止sql注入
声明:这是转载的. mybatis中的#和$的区别 1. #将传入的数据都当成一个字符串,会对自动传入的数据加一个双引号.如:order by #user_id#,如果传入的值是111,那么解析成sq ...
- 第七次Scrum Metting
日期:2021年5月5日 会议主要内容概述:前后端对接,以及接下来的测试优化等工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 徐宇龙 后端 测试数据模块和 ...
- [Beta]the Agiles Scrum Meeting 2
会议时间:2020.5.11 20:00 1.每个人的工作 今天已完成的工作 成员 已完成的工作 yjy 修复bug将自动评测改为异步HTTP请求 tq 实现查看.删除测试点功能的后端将自动评测改为异 ...
- 热身训练4 Eighty seven
Eighty seven 简要题意: n个卡片,其中第i个卡片的数值为$a[i]$.一共q次询问,每次询问将删去其中3个卡片(可能删除若干相同的卡片)后,问能否选出10个卡片,数值之和等于87. n≤ ...
- Go语言核心36讲(Go语言进阶技术九)--学习笔记
15 | 关于指针的有限操作 在前面的文章中,我们已经提到过很多次"指针"了,你应该已经比较熟悉了.不过,我们那时大多指的是指针类型及其对应的指针值,今天我们讲的则是更为深入的内容 ...
- WiFi模块选型参考
经常会碰到一些关于wifi模块的咨询,很多刚接触wifi模块的设计人员或者用户,只知道提wifi模块,很难提具体的模块要求!希望通过文章的介绍,会做到有的放矢!咨询时一定要搞清楚自己希望使用什么主芯片 ...
- stm32f103系列引脚定义-功能图
器件功能和配置(STM32F103xx增强型) STM32F103xx增强型模块框架图 STM32F103xx增强型VFQFPN36管脚图 STM32F103xx增强型LQFP100管脚图 STM32 ...
- 使用 ASP.NET Core 3.1 的微服务开发指南
使用 ASP.NET Core 3.1 的微服务 – 终极详细指南 https://procodeguide.com/programming/microservices-asp-net-core/ A ...