Codeforces 1368E - Ski Accidents(构造+思维)
神仙构造题(不过可能我构造太烂了?)
首先考虑这个奇奇怪怪的 \(\dfrac{4}{7}\),以及这个每个点出度最多为 \(2\) 的条件有何用意。容易发现 \(4=2^2,7=1+2+4\),这启发我们通过某种方式将原图的点集分成三部分。我们考虑构造三个点集 \(A,B,C\) 满足:
- 对于 \(A\) 中的点 \(x\),要么其入度为 \(0\),要么所有连向它的边的另一个端点都属于 \(C\)
- 对于 \(B\) 中的点 \(x\),满足不存在一条边 \((y,x),s.t.y\in B\),且至少存在一条边 \((y,x),s.t.y\in A\)
- 对于 \(C\) 中的点 \(x\),满足至少存在一条边 \((y,x),s.t.y\in B\)。
显然对于任意 \(v\in V\),\(v\) 必然属于 \(A,B,C\) 之一,因此这是一个合法的划分。我们考虑一遍拓扑排序求出 \(col_x\) 表示点 \(x\) 属于 \(A,B,C\) 哪个集合(\(0\) 表示 \(A\),\(1\) 表示 \(B\),\(2\) 表示 \(C\)),然后取 \(col_x=2\) 的点作为答案即可。
为什么?首先我们要说明 \(|C|\le\dfrac{4}{7}n\),不难发现由于每个点度最多为二,因此每个 \(A\) 中的点最多可以产生 \(2\) 个 \(B\) 中的点,因此 \(|B|\le 2|A|\),每个 \(B\) 中的点也最多对应 \(2\) 个 \(C\) 中的点,因此 \(|C|\le 2|B|\),故 \(|C|\le\dfrac{4}{7}n\)。其次我们要说明删除 \(C\) 中的点之后剩余部分满足最多存在一条路径这个限制,不难发现 \(A\) 中点由于在原图中只存在 \(C\) 中点连向它们的边,现在删除了 \(C\),自然入度为 \(0\),同理 \(B\) 中点出度也为零。显然这样的图最长路径只可能是某个 \(A\) 中的点连到某个 \(B\) 中的点,长度最多为 \(1\),符合要求。
时间复杂度线性。
希望今晚 GLBR 不要在 E 放个这样的人类智慧题
const int MAXN=2e5;
const int MAXM=4e5;
int n,m,hd[MAXN+5],to[MAXM+5],nxt[MAXM+5],ec=0,deg[MAXN+5],col[MAXN+5];
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
void clear(){for(int i=1;i<=n;i++) hd[i]=deg[i]=col[i]=0;ec=0;}
void solve(){
scanf("%d%d",&n,&m);clear();
for(int i=1,u,v;i<=m;i++) scanf("%d%d",&u,&v),adde(u,v),deg[v]++;
queue<int> q;for(int i=1;i<=n;i++) if(!deg[i]) q.push(i);
vector<int> res;
while(!q.empty()){
int x=q.front();q.pop();
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];
if(col[x]==1) col[y]=2;
else if(col[x]==0&&!col[y]) col[y]=1;
if(!--deg[y]) q.push(y);
} if(col[x]==2) res.pb(x);
} printf("%d\n",res.size());
for(int x:res) printf("%d ",x);
printf("\n");
}
int main(){
int qu;scanf("%d",&qu);
while(qu--) solve();
return 0;
}
Codeforces 1368E - Ski Accidents(构造+思维)的更多相关文章
- Codeforces 755E:PolandBall and White-Red graph(构造+思维)
http://codeforces.com/contest/755/problem/E 题意:给出n个点和一个距离d,让你在这个n个点的图里面构造一个子图,使得这个子图的直径和补图的直径的较小值为d, ...
- codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)
题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...
- Codeforces 989 P循环节01构造 ABCD连通块构造 思维对云遮月参考系坐标轴转换
A 直接判存不存在连续的三个包含A,B,C就行 /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a ...
- Educational Codeforces Round 53C(二分,思维|构造)
#include<bits/stdc++.h>using namespace std;const int N=1e6+6;int x[N],y[N];int sx,sy,n;char s[ ...
- Codeforces 232A - Cycles (构造 + 思维)
题目链接: 232A - Cycles(点击打开) 题意: 要构成一个存在 \(k\) 个三元环的图,需要多少个点,输出顶点数 \(n\),并输出图. 题解: 题目中的任何图都可以用 \(90\)~ ...
- Codeforces Gym101503E:XOR-omania(构造+思维)
题目链接 题意 给出m个数b,这些数是由n个数a两两异或组成的,问初始的那n个数分别是多少. 思路 存在多组解的情况...原来是个构造题. 考虑这样一种情况:b1 = a1 ^ a2,b2 = a2 ...
- codeforces 389 D. Fox and Minimal path(构造+思维)
题目链接:https://vjudge.net/contest/175446#problem/J 题解:显然要用最多n个点构成的图要使的得到的最短路条数有1e9次个,显然要有几个数相乘容易想到2的几进 ...
- CF1103C Johnny Solving (Codeforces Round #534 (Div. 1)) 思维+构造
题目传送门 https://codeforces.com/contest/1103/problem/C 题解 这个题还算一个有难度的不错的题目吧. 题目给出了两种回答方式: 找出一条长度 \(\geq ...
- Codeforces Global Round 8 E. Ski Accidents(拓扑排序)
题目链接:https://codeforces.com/contest/1368/problem/E 题意 给出一个 $n$ 点 $m$ 边的有向图,每条边由编号较小的点通向编号较大的点,每个点的出度 ...
随机推荐
- Docker制作能够ssh连接的镜像
本类文章只作为记录使用 命令操作: #拉取Centos 7 docker pull centos:7 #运行一个镜像 docker run -tdi --privileged centos:7 ini ...
- 模拟赛18 T1 施工 题解
前言: 真的是不容易啊.这个题在考场上想到了最关键的性质,但是没写出来. 后来写出来,一直调,小错不断. 没想到改的最后一个错误是两个int 乘起来爆了int 其实最后我还是觉得复杂度很假.\(n^2 ...
- 关于linux下编译的几点知识
1.-L.-rpath 和 rpath_link的区别 参考博客文章:https://www.cnblogs.com/candl/p/7358384.html (1)-rpath和-rpath-lin ...
- NavigationView使用简介
Android支持直接创建带有NavigationView的Activity,这里主要介绍NavigationView的逻辑. NavigationView通常是跟DrawerLayout一起使用.D ...
- Matlab+Qt开发笔记(一):matlab搭建Qt开发matlib环境以及Demo测试
前言 做一些数据处理软件,使用matlab文件,.mat文件. 准备条件 安装matlab2016,发现是vs 12(是vs2011版本),Qt5.9.3是支持vs 14(是vs2015版 ...
- 重建二叉树 牛客网 剑指Offer
重建二叉树 牛客网 剑指Offer 题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3, ...
- POJ 3692 Kindergarten(二分图最大独立集)
题意: 有G个女孩,B个男孩.女孩彼此互相认识,男孩也彼此互相认识.有M对男孩和女孩是认识的.分别是(g1,b1),.....(gm,bm). 现在老师要在这G+B个小孩中挑出一些人,条件是这些人都互 ...
- 第07课 OpenGL 光照和键盘(2)
下一段代码绘制贴图立方体.我只对新增的代码进行注解.如果您对没有注解的代码有疑问,回头看看第六课. int DrawGLScene(GLvoid) // 从这里开始进行所有的绘制 { glClear( ...
- springcloud优雅停止上下线与熔断
SpringCloud 服务优雅上下线 Spring Boot 框架使用"约定大于配置"的特性,优雅流畅的开发过程,应用部署启动方式也很优雅.但是我们通常使用的停止应用的方式是 k ...
- SpringBoot2.x请求注解简单介绍(4)
1.新建项目,项目中实战讲解注解作用 2.pom.xml依赖配置 <properties> <project.build.sourceEncoding>UTF-8</pr ...