1. 题目

1.1 英文题目

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

1.2 中文题目

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

1.3输入输出

输入 输出
nums = [-2,1,-3,4,-1,2,1,-5,4] 6
nums = [1] 1
nums = [5,4,-1,7,8] 23

1.4 约束条件

  • 1 <= nums.length <= 3 * 104
  • -105 <= nums[i] <= 105

2. 实验平台

IDE:VS2019

IDE版本:16.10.1

语言:c++11

3. 程序

3.1 测试程序

#include "Solution.h"
#include <vector> // std::vector
#include<iostream> // std::cout
using namespace std; // 主程序
void main()
{
// 输入
vector<int> nums = { -100000 }; Solution solution; // 实例化Solution
int k = solution.maxSubArray(nums); // 主功能 // 输出
cout << k << endl;
}

3.2 功能程序

3.2.1 穷举遍历法

(1)代码

#pragma once
#include<vector> // std::vector
using namespace std; //主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 暴力求解
int maxValue = -100000;
for (int i = 0; i < nums.size(); i++) //遍历起始值
{
int nowSub = 0;
for (int j = i; j < nums.size(); j++) // 全部遍历一遍
{
nowSub += nums[j];
if (nowSub > maxValue) maxValue = nowSub;
}
}
return maxValue;
}
};

(2)解读

该方法是最容易想到的方法,暴力求解,运用滑动窗口法进行遍历,分别得到以某个为开头的序列进行求最大值,并随遍历的进行实时更新该最大值。复杂度为O(\(n^2\))。

3.2.2 动态规划法

(1)代码

#pragma once
#include<vector> // std::vector
using namespace std; //主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 动态规划(时间复杂度O(n),空间复杂度O(n))
int length = nums.size();
vector<int> dp(length); // 存储每次递归的最大值
dp[0] = nums[0];
for (int i = 1; i < length; i++)
dp[i] = max(dp[i - 1] + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式 //求dp中的最大值
int maxSub = -100000;
for (auto j : dp) // c++11中基于范围的for循环(Range-based for loop)
if (maxSub < j)
dp[j] = maxSub;
return maxSub;
}
};

(2)思路

参考:https://zhuanlan.zhihu.com/p/85188269

3.2.3 kadane算法

(1)代码

#pragma once
#include<vector> // std::vector
using namespace std; //主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// kadane算法(时间复杂度O(n),空间复杂度O(1))
int length = nums.size();
int maxSub = nums[0]; // 慢指针
int maxSubTemp = nums[0]; //快指针
for (auto i : nums)
{
maxSubTemp = max(maxSubTemp + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式
if (maxSubTemp > maxSub) // 若当前最大值大于总最大值,则总最大值更新
maxSub = maxSubTemp;
}
return maxSub;
}
};

(2)解读

kadane算法是在动态规划法的基础上加上快慢指针法,快指针指向以i为结尾的子数组最大值之和,慢指针指向迄今为止的子数组最大值之和

3.3.4 分治法(divide and conquer)

(1)代码

pragma once

include // std::vector

//#include<limits.h> // INT_MIN整型最小值

include // std::max

using namespace std;

//主功能

class Solution {

public:

int maxSubArray(vector& nums) {

if (nums.empty()) return 0;

return helper(nums, 0, (int)nums.size() - 1);

}

int helper(vector& nums, int left, int right)

{

if (left >= right) return nums[left];

int mid = left + (right - left) / 2;

int lmax = helper(nums, left, mid - 1);

int rmax = helper(nums, mid + 1, right);

int mmax = nums[mid], t = mmax;

for (int i = mid - 1; i >= left; --i)

{

t += nums[i];

mmax = max(mmax, t);

}

t = mmax;

for (int i = mid + 1; i <= right; ++i)

{

t += nums[i];

mmax = max(mmax, t);

}

return max(mmax, max(lmax, rmax));

}

};

参考:https://www.cnblogs.com/grandyang/p/4377150.html

(2)解读

参考:https://www.jianshu.com/p/3a38d523503b

4. 相关知识

(1)滑动窗口法

滑动窗口其实就是选取部分序列作为窗口,窗口不停移动,直至找到答案,感觉这更像一种思想。

详细介绍可以参考:https://www.cnblogs.com/huansky/p/13488234.html

(2) Lamda表达式

Lamda表达式可以直接在需要调用函数的位置定义短小精悍的函数,而不需要预先定义好函数,但是不便于复用,适用于比较简单且不需要复用的函数。写法为:

func(input1,input2,[],(type1 parameter1,type2 parameter2){函数;})

详细介绍参考:https://blog.csdn.net/A1138474382/article/details/111149792

(3) 基于范围的for循环(Range-based for loop)

c++11中加入的新特性,类似于python,matlab等面向对象语言的for循环,写法为:

for(auto i:array){;}

详细介绍参考:https://blog.csdn.net/hailong0715/article/details/54172848

(4)kadane算法

参考:https://zhuanlan.zhihu.com/p/85188269

Leetcode No.53 Maximum Subarray(c++实现)的更多相关文章

  1. [Leetcode][Python]53: Maximum Subarray

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...

  2. Leetcode之53. Maximum Subarray Easy

    Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...

  3. 【LeetCode】53. Maximum Subarray (2 solutions)

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  4. 【一天一道LeetCode】#53. Maximum Subarray

    一天一道LeetCode系列 (一)题目 Find the contiguous subarray within an array (containing at least one number) w ...

  5. 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...

  6. LeetCode OJ 53. Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  7. [leetcode DP]53. Maximum Subarray

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  8. 【Leetcode】53. Maximum Subarray

    题目地址: https://leetcode.com/problems/maximum-subarray/description/ 题目描述: 经典的求最大连续子数组之和. 解法: 遍历这个vecto ...

  9. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

随机推荐

  1. flink Checkpoint优化

    一.设置最小时间间隔 当flink应用开启Checkpoint功能,并配置Checkpoint时间间隔,应用中就会根据指定的时间间隔周期性地对应用进行Checkpoint操作.默认情况下Checkpo ...

  2. Java基础语法,常用知识复习

    1.开发环境搭建 1.1JDK.JRE.JVM.的关系 JDK = JRE + 开发工具集(例如javac编译工具集等) JRE = JVM + Java SE 标准类库 2.基本语法 2.1.jav ...

  3. libevent中数据缓冲区buffer分析

    很多时候为了应对数据IO的"慢"或者其他原因都需要使用数据缓冲区.对于数据缓冲,我们不陌生,但是对于如何实现这个缓冲区,相信很多时候大家都没有考虑过.今天就通过分析libevent ...

  4. rabbit_消费者

    import pika import json import time import os import ast import uuid import time import json import ...

  5. python操作kafka

    python操作kafka 一.什么是kafka kafka特性: (1) 通过磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能. (2) 高吞吐量 :即使是 ...

  6. GO学习-(7) Go语言基础之流程控制

    流程控制是每种编程语言控制逻辑走向和执行次序的重要部分,流程控制可以说是一门语言的"经脉". Go语言中最常用的流程控制有if和for,而switch和goto主要是为了简化代码. ...

  7. ONNX 实时graph优化方法

    ONNX 实时graph优化方法 ONNX实时提供了各种图形优化来提高模型性能.图优化本质上是图级别的转换,从小型图简化和节点消除,到更复杂的节点融合和布局优化. 图形优化根据其复杂性和功能分为几个类 ...

  8. python2向python3移植问题

    问题: payload = "A"*140 # padding ropchain = p32(puts_plt) ropchain += p32(entry_point) ropc ...

  9. .NET平台系列24:从.NET Framework迁移到.NET Core/.NET5的技术指南

    系列目录     [已更新最新开发文章,点击查看详细] 本文讲解了在将代码从 .NET Framework 移植到 .NET(旧称为 .NET Core)时应考虑的事项. 对于许多项目,从 .NET ...

  10. 【NX二次开发】 删除面操作

    录制修改封装删除面 DeleteFaces 1 #include <uf_defs.h> 2 #include <NXOpen/NXException.hxx> 3 #incl ...