Leetcode No.53 Maximum Subarray(c++实现)
1. 题目
1.1 英文题目
Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
1.2 中文题目
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
1.3输入输出
输入 | 输出 |
---|---|
nums = [-2,1,-3,4,-1,2,1,-5,4] | 6 |
nums = [1] | 1 |
nums = [5,4,-1,7,8] | 23 |
1.4 约束条件
- 1 <= nums.length <= 3 * 104
- -105 <= nums[i] <= 105
2. 实验平台
IDE:VS2019
IDE版本:16.10.1
语言:c++11
3. 程序
3.1 测试程序
#include "Solution.h"
#include <vector> // std::vector
#include<iostream> // std::cout
using namespace std;
// 主程序
void main()
{
// 输入
vector<int> nums = { -100000 };
Solution solution; // 实例化Solution
int k = solution.maxSubArray(nums); // 主功能
// 输出
cout << k << endl;
}
3.2 功能程序
3.2.1 穷举遍历法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 暴力求解
int maxValue = -100000;
for (int i = 0; i < nums.size(); i++) //遍历起始值
{
int nowSub = 0;
for (int j = i; j < nums.size(); j++) // 全部遍历一遍
{
nowSub += nums[j];
if (nowSub > maxValue) maxValue = nowSub;
}
}
return maxValue;
}
};
(2)解读
该方法是最容易想到的方法,暴力求解,运用滑动窗口法进行遍历,分别得到以某个为开头的序列进行求最大值,并随遍历的进行实时更新该最大值。复杂度为O(\(n^2\))。
3.2.2 动态规划法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// 动态规划(时间复杂度O(n),空间复杂度O(n))
int length = nums.size();
vector<int> dp(length); // 存储每次递归的最大值
dp[0] = nums[0];
for (int i = 1; i < length; i++)
dp[i] = max(dp[i - 1] + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式
//求dp中的最大值
int maxSub = -100000;
for (auto j : dp) // c++11中基于范围的for循环(Range-based for loop)
if (maxSub < j)
dp[j] = maxSub;
return maxSub;
}
};
(2)思路
参考:https://zhuanlan.zhihu.com/p/85188269
3.2.3 kadane算法
(1)代码
#pragma once
#include<vector> // std::vector
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// kadane算法(时间复杂度O(n),空间复杂度O(1))
int length = nums.size();
int maxSub = nums[0]; // 慢指针
int maxSubTemp = nums[0]; //快指针
for (auto i : nums)
{
maxSubTemp = max(maxSubTemp + nums[i], nums[i], [](int a, int b) {return a > b ? a : b; }); // Lamda表达式
if (maxSubTemp > maxSub) // 若当前最大值大于总最大值,则总最大值更新
maxSub = maxSubTemp;
}
return maxSub;
}
};
(2)解读
kadane算法是在动态规划法的基础上加上快慢指针法,快指针指向以i为结尾的子数组最大值之和,慢指针指向迄今为止的子数组最大值之和
3.3.4 分治法(divide and conquer)
(1)代码
pragma once
include // std::vector
//#include<limits.h> // INT_MIN整型最小值
include // std::max
using namespace std;
//主功能
class Solution {
public:
int maxSubArray(vector& nums) {
if (nums.empty()) return 0;
return helper(nums, 0, (int)nums.size() - 1);
}
int helper(vector& nums, int left, int right)
{
if (left >= right) return nums[left];
int mid = left + (right - left) / 2;
int lmax = helper(nums, left, mid - 1);
int rmax = helper(nums, mid + 1, right);
int mmax = nums[mid], t = mmax;
for (int i = mid - 1; i >= left; --i)
{
t += nums[i];
mmax = max(mmax, t);
}
t = mmax;
for (int i = mid + 1; i <= right; ++i)
{
t += nums[i];
mmax = max(mmax, t);
}
return max(mmax, max(lmax, rmax));
}
};
参考:https://www.cnblogs.com/grandyang/p/4377150.html
(2)解读
参考:https://www.jianshu.com/p/3a38d523503b
4. 相关知识
(1)滑动窗口法
滑动窗口其实就是选取部分序列作为窗口,窗口不停移动,直至找到答案,感觉这更像一种思想。
详细介绍可以参考:https://www.cnblogs.com/huansky/p/13488234.html
(2) Lamda表达式
Lamda表达式可以直接在需要调用函数的位置定义短小精悍的函数,而不需要预先定义好函数,但是不便于复用,适用于比较简单且不需要复用的函数。写法为:
func(input1,input2,[],(type1 parameter1,type2 parameter2){函数;})
详细介绍参考:https://blog.csdn.net/A1138474382/article/details/111149792
(3) 基于范围的for循环(Range-based for loop)
c++11中加入的新特性,类似于python,matlab等面向对象语言的for循环,写法为:
for(auto i:array){;}
详细介绍参考:https://blog.csdn.net/hailong0715/article/details/54172848
(4)kadane算法
参考:https://zhuanlan.zhihu.com/p/85188269
Leetcode No.53 Maximum Subarray(c++实现)的更多相关文章
- [Leetcode][Python]53: Maximum Subarray
# -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 53: Maximum Subarrayhttps://leetcode.co ...
- Leetcode之53. Maximum Subarray Easy
Leetcode 53 Maximum Subarray Easyhttps://leetcode.com/problems/maximum-subarray/Given an integer arr ...
- 【LeetCode】53. Maximum Subarray (2 solutions)
Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...
- 【一天一道LeetCode】#53. Maximum Subarray
一天一道LeetCode系列 (一)题目 Find the contiguous subarray within an array (containing at least one number) w ...
- 【LeetCode】53. Maximum Subarray 最大子序和 解题报告(Python & C++ & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力解法 动态规划 日期 题目地址: https:/ ...
- LeetCode OJ 53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- [leetcode DP]53. Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- 【Leetcode】53. Maximum Subarray
题目地址: https://leetcode.com/problems/maximum-subarray/description/ 题目描述: 经典的求最大连续子数组之和. 解法: 遍历这个vecto ...
- 53. Maximum Subarray【leetcode】
53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...
随机推荐
- selenium模拟不同浏览器的方式
from selenium import webdriver # 使用Firefox手机浏览器 user_agent = "Mozilla/5.0 (iPad; CPU OS 12_1 li ...
- linux ( crontab 定时任务命令)
linux ( crontab 定时任务命令) crontab 定时任务命令 linux 系统则是由 cron (crond) 这个系统服务来控制的.Linux 系统上面原本就有非常多的计划性工 ...
- Linux分区创建、挂载
fdisk -l 这块盘是没有分区的,没有被使用. fdisk /dev/vdb 操作这块磁盘, 创建分区 格式化/dev/sdb1为ext4 mkfs -t ext4 /dev/vdb1 mkfs. ...
- CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状
CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Sha ...
- TensorFlow损失函数
TensorFlow损失函数 正如前面所讨论的,在回归中定义了损失函数或目标函数,其目的是找到使损失最小化的系数.本文将介绍如何在 TensorFlow 中定义损失函数,并根据问题选择合适的损失函数. ...
- 智能物联网(AIoT,2020年)(下)
智能物联网(AIoT,2020年)(下) 12工业物联网是AIoT在工业领域第一战场 工业物联网分为感知.决策.执行,OS与软件是大脑+神经 13工业场景下一步如何使用AIoT 不止工业物联网:用人工 ...
- YOLO、SSD、FPN、Mask-RCNN检测模型对比
YOLO.SSD.FPN.Mask-RCNN检测模型对比 一.YOLO(you only look once) YOLO 属于回归系列的目标检测方法,与滑窗和后续区域划分的检测方法不同,他把检测任务当 ...
- Mask R-CNN用于目标检测和分割代码实现
Mask R-CNN用于目标检测和分割代码实现 Mask R-CNN for object detection and instance segmentation on Keras and Tenso ...
- 一篇文章通俗易懂的让你彻底理解 Java 注解
很多Java程序员,对Java的注解一知半解,更有甚者,有的人可能连注解是什么都不知道 本文我们用最简单的 demo , 最通俗最短的语言,带你了解注解到底是什么? 先来简单回顾一下基础,我们知道,J ...
- WPF 后台代码做 TranslateTransform 的动画
本文告诉大家,在后台代码,对 TranslateTransform 做动画的方法 今天小伙伴问我一个问题,说为什么相同的代码,如果设置到按钮上,是可以让按钮的某个属性变更,但是如果设置给 Transl ...