\(\mathcal{Description}\)

  Link.

  积性函数 \(f\) 满足 \(f(p^c)=p\oplus c~(p\in\mathbb P,c\in\mathbb N_+)\),求 \(\sum_{i=1}^n f(i)\bmod(10^9+7)\)。

\(\mathcal{Solution}\)

  首先,考虑 \(f\) 的素数点值:

\[f(p)=\begin{cases}
3,&p=2\\
p-1,&\text{otherwise}
\end{cases}
\]

由 \(p-1\) 联想到 \(\varphi(p)=p-1\),可惜 \(\varphi(2)=1\)。干脆一点,我们直接强行把 \(\varphi\) 的偶数点值乘上 \(3\),令

\[g(n)=\begin{cases}
\varphi(n),&2\not\mid n\\
3\varphi(n),&\text{otherwise}
\end{cases}
\]

显然它也是积性函数。

  接着,求 \(g\) 的前缀和。其前缀和为 \(\varphi\) 的前缀和加上两倍偶数点的 \(\varphi\) 前缀和。记

\[\begin{aligned}
S(n)&=\sum_{i=1}^n\varphi(2i)\\
&=\sum_{i=1}^n[2\not\mid i]\varphi(i)+2\sum_{i=1}^n[2\mid i]\varphi(i)\\
&=S\left(\frac{n}{2}\right)+\sum_{i=1}^n\varphi(i)
\end{aligned}
\]

杜教筛处理 \(\varphi\) 的前缀,\(S\) 就能在可观(我不会算 qwq)的复杂度内预处理出来,继而也得到了 \(g\) 的 \(\mathcal O(\sqrt n)\) 个前缀和。

  此外,我们还需要求 \(h(i)\),即求 \(h(p^c)~(c>1)\)。考虑 \(f(p^c)\) 与它的关系:

\[f(p^c)=\sum_{i=0}^ch(p^i)g(p^{c-i})\\
\Rightarrow~~~~h(p^c)=f(p^c)-\sum_{i=0}^{c-1}h(p^i)g(p^{c-i})
\]

顺手把 \(\mathcal O(\sqrt n\ln\ln\sqrt n)\)(\(n\) 以内素数的倒数和的规模是 \(\mathcal O(\ln\ln n)\))个 \(h(p^c)\) 也预处理出来,最后 \(\mathcal O(\sqrt n)\) 搜索 Powerful Number 就能求出答案啦!

\(\mathcal{Code}\)

/* Clearink */

#include <cmath>
#include <cstdio>
#include <vector>
#include <unordered_map> #define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) typedef long long LL; const int MAXS = 1e7, MAXSN = 1e5, MOD = 1e9 + 7, INV2 = 500000004;
int pn, pr[MAXS + 5], phi[MAXS + 5], phis[MAXS + 5];
bool npr[MAXS + 5];
std::vector<int> gpr[MAXSN + 5]; inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); } inline void sieve() {
phi[1] = phis[1] = 1;
rep ( i, 2, MAXS ) {
if ( !npr[i] ) phi[pr[++pn] = i] = i - 1;
for ( int j = 1, t; j <= pn && ( t = i * pr[j] ) <= MAXS; ++j ) {
npr[t] = true;
if ( !( i % pr[j] ) ) { phi[t] = phi[i] * pr[j]; break; }
phi[t] = phi[i] * ( pr[j] - 1 );
}
phis[i] = add( phis[i - 1], phi[i] );
}
} inline int phiSum( const LL n ) {
static std::unordered_map<LL, int> mem;
if ( n <= MAXS ) return phis[n];
if ( mem.count( n ) ) return mem[n];
int ret = mul( mul( n % MOD, ( n + 1 ) % MOD ), INV2 );
for ( LL l = 2, r; l <= n; l = r + 1 ) {
r = n / ( n / l );
subeq( ret, mul( ( r - l + 1 ) % MOD, phiSum( n / l ) ) );
}
return mem[n] = ret;
} inline int ephiSum( const LL n ) {
if ( !n ) return 0;
return add( ephiSum( n >> 1 ), phiSum( n ) );
} LL n;
int sn, sum[MAXSN * 2 + 5]; inline void initInvG() {
rep ( i, 1, pn ) {
if ( 1ll * pr[i] * pr[i] > n ) break;
std::vector<int>& curg( gpr[i] );
curg.push_back( 1 ), curg.push_back( 0 );
LL pwr = 1ll * pr[i] * pr[i];
for ( int j = 2; pwr <= n; ++j, pwr *= pr[i] ) {
int g = pr[i] ^ j;
LL pwc = pr[i];
for ( int k = j - 1; ~k; --k, pwc *= pr[i] ) {
subeq( g,
mul( ( pwc / pr[i] * ( pr[i] ^ 1 ) ) % MOD, curg[k] ) );
}
curg.push_back( g );
}
}
} inline int powerSum( const int pid, LL x, const int g ) {
if ( !g ) return 0;
int ret = 0, p = pr[pid];
if ( pid == 1 || !( x % pr[pid - 1] ) ) {
addeq( ret, mul( g, x > sn ? sum[n / x] : sum[sn + x] ) );
}
if ( ( x *= p ) > n ) return ret;
if ( ( x *= p ) > n ) return ret;
addeq( ret, powerSum( pid + 1, x / ( 1ll * p * p ), g ) );
for ( int i = 2; x <= n; ++i, x *= p ) {
addeq( ret, powerSum( pid + 1, x, mul( g, gpr[pid][i] ) ) );
}
return ret;
} int main() {
sieve();
scanf( "%lld", &n ), sn = sqrt( 1. * n );
rep ( i, 1, sn ) sum[i] = add( phiSum( i ), mul( 2, ephiSum( i >> 1 ) ) );
rep ( i, 1, sn ) {
sum[i + sn] = add( phiSum( n / i ), mul( 2, ephiSum( n / i >> 1 ) ) );
}
initInvG();
printf( "%d\n", powerSum( 1, 1, 1 ) );
return 0;
}

Solution -「LOJ #6053」简单的函数的更多相关文章

  1. Solution -「LOJ #138」「模板」类欧几里得算法

    \(\mathcal{Description}\)   Link.   \(T\) 组询问,每次给出 \(n,a,b,c,k_1,k_2\),求 \[\sum_{x=0}^nx^{k_1}\left\ ...

  2. Solution -「LOJ #6485」 LJJ 学二项式定理

    \(\mathcal{Description}\)   Link.   给定 \(n,s,a_0,a_1,a_2,a_3\),求: \[\sum_{i=0}^n\binom{n}is^ia_{i\bm ...

  3. Solution -「LOJ #6029」「雅礼集训 2017」市场

    \(\mathcal{Description}\)   Link.   维护序列 \(\lang a_n\rang\),支持 \(q\) 次如下操作: 区间加法: 区间下取整除法: 区间求最小值: 区 ...

  4. Solution -「LOJ #141」回文子串 ||「模板」双向 PAM

    \(\mathcal{Description}\)   Link.   给定字符串 \(s\),处理 \(q\) 次操作: 在 \(s\) 前添加字符串: 在 \(s\) 后添加字符串: 求 \(s\ ...

  5. Solution -「LOJ #150」挑战多项式 ||「模板」多项式全家桶

    \(\mathcal{Description}\)   Link.   给定 \(n\) 次多项式 \(F(x)\),在模 \(998244353\) 意义下求 \[G(x)\equiv\left\{ ...

  6. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  7. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  8. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  9. Solution -「JOISC 2021」「LOJ #3489」饮食区

    \(\mathcal{Description}\)   Link.   呐--不想概括题意,自己去读叭~ \(\mathcal{Solution}\)   如果仅有 1. 3. 操作,能不能做?    ...

随机推荐

  1. NIO【同步非阻塞io模型】关于 文件io 的总结

    1.前言 这一篇随笔是写 NIO 关于文件输入输出的总结 /* 总结: 1.io操作包括 socket io ,file io ; 2.在nio模型,file io使用fileChannel 管道 , ...

  2. set类型转string[] 正确写法

    测试源码: 1 @org.junit.Test 2 public void testSetType(){ 3 //测试set类型转string[] 4 // 5 Set<String> s ...

  3. Linux上天之路(八)之用户和组

    主要内容. 用户创建,删除,修改 密码及密码文件 组创建,删除,修改 组密码及组配置文件 相关文件 Linux用户分类 超级管理员: UID为0 root用户拥有至高无上的命令,root用户不能改名 ...

  4. 详解Scrapy的命令行工具

    接触过Scrapy的人都知道,我们很多操作是需要借助命令行来执行的,比如创建项目,运行爬虫等.所以了解和掌握这些命令对于scrapy的学习是很有帮助的! Scrapy 命令 首先,在scrapy命令中 ...

  5. 联盛德 HLK-W806 (十三): 运行FatFs读写FAT和exFat格式的SD卡/TF卡

    目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...

  6. 学习javaScript必知必会(1)~js介绍、函数、匿名函数、自调用函数、不定长参数

    一.简单了解一下JavaScript(js) 1.什么是js? js:是网景公司开发的,是基于客户端浏览器, 面向(基于)对象.事件驱动式的页面脚本语言. 2.什么场景下使用到js? 表单验证.页面特 ...

  7. 一个小程序:Instrumentation的使用

    本来是想练习Matrix的,没想到写了一个自定义View,监听它的ASWD键后,不知道该如何按下ASWD(手机上一般都没实体按键了).于是: 一个自定义View: public class MyVie ...

  8. Node内部架构图

    1.Node内部架构图 先来看一下Node节点的内部实现架构图. 首先最上层入口是Restful风格和javaTcp风格的API入口,RestFul请求映射到处理器RestControl.JavaAp ...

  9. HBase结构

      Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据 Hive,可以使用类似SQL语言来访问HBase,最终本质是编译成MapReduce Job来处理HBase表数据,适合做数 ...

  10. WebGPU | 相关知识概述

    首先看下WebGPU的目标: 同时支持实时屏幕渲染和离屏渲染. 使通用计算能够在 GPU 上高效执行. 支持针对各种原生 GPU API 的实现:Microsoft 的 D3D12.Apple 的 M ...