\(\mathcal{Description}\)

  Link.

  给定 \(m\),和长度为 \(n\),字符集为大写字母的字符串 \(s\),求字符集相同且等长的字符串 \(t\) 的数量,使得 \(s,t\) 的 LCS 长度不小于 \(n-m\)。答案模 \((10^9+7)\)。

  \(n\le5\times10^4\),\(m\le3\)。

\(\mathcal{Solution}\)

  有个傻瓜怕不是忘了 DP of DP 这种东西。

  LCS 的 DP 信息是很方便压缩储存的,在决策 \(t_{i+1}\) 时,我们希望知道 \(g_{i,\max\{0,i-m\}..\min\{n,i+m\}}\)(\(g_{i,j}\) 即 \(s[:i]\) 和 \(t[:j]\) 的 LCS),记录第一个位置和其对应下标的差值(不超过 \(m\))以及后面位置的差分(\(01\) 状态),可以得到一个 \((m+1)2^{2m}\) 的压缩,转移枚举在这 \(\mathcal O(m)\) 个内的字符,整体转移不在的字符,最劣复杂度为 \(\mathcal O(nm^22^{2m})\),不过明显跑不满。

\(\mathcal{Code}\)

  写得很丑就试了 qwq。

/*~Rainybunny~*/

#include <cstdio>
#include <cassert>
#include <cstring> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 5e4, MAXM = 3, MOD = 1e9 + 7;
int n, m, f[2][MAXM + 1][1 << 2 * MAXM];
char str[MAXN + 5]; /*
f(i,i-m), f(i,j-m+1), ..., f(i,i+m)
x , +[0] , +[...], +[2m-1]
*/ inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int imax( const int a, const int b ) { return a < b ? b : a; }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); } int main() {
scanf( "%s %d", str + 1, &m ), n = int( strlen( str + 1 ) );
str[0] = -1; rep ( i, 1, n ) str[i] -= 'A'; f[0][0][0] = 1;
for ( int i = 0, sta = 0; i < n; ++i, sta ^= 1 ) {
rep ( j, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
int& cur = f[sta][j][S];
if ( !cur ) continue;
// printf( "f(%d,%d,%d)=%d\n", i, j, S, cur );
static bool vis[26] = {}; int cnt = 0;
int tp = imax( i - m, 0 ), sp = imax( i - m + 1, 0 ), u, v; rep ( t, sp, imin( i + m + 1, n ) ) if ( t && !vis[str[t]] ) {
int c = str[t]; vis[c] = true, ++cnt;
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
// f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+1}.
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( imax( las[1], u ), las[0] + ( str[k] == c ) );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], cur );
}
{
int las[2] = { imax( i - m, 0 ) - j, 0 }, fir = 0, T = 0;
rep ( k, sp, imin( i + m + 1, n ) ) {
u = las[0] + ( S >> ( k - tp - 1 ) & 1 );
v = imax( las[1], u );
if ( k == sp ) {
fir = k - v;
if ( fir > m ) break;
} else T |= ( v > las[1] ) << ( k - sp - 1 );
las[0] = u, las[1] = v;
}
if ( fir <= m ) addeq( f[!sta][fir][T], mul( cur, 26 - cnt ) );
} rep ( t, sp, imin( i + m + 1, n ) ) if ( t ) vis[str[t]] = false;
cur = 0;
}
} int ans = 0;
rep ( i, 0, m ) rep ( S, 0, ( 1 << 2 * m ) - 1 ) {
// if ( f[n & 1][i][S] )
// printf( "f(%d,%d,%d)=%d\n", n, i, S, f[n & 1][i][S] );
assert( !f[n & 1][i][S] || !( S >> m ) );
if ( imax( n - m, 0 ) - i + __builtin_popcount( S ) >= n - m ) {
addeq( ans, f[n & 1][i][S] );
}
}
printf( "%d\n", ans );
return 0;
}

Solution -「Gym 102759G」LCS 8的更多相关文章

  1. Solution -「Gym 102979E」Expected Distance

    \(\mathcal{Description}\)   Link.   用给定的 \(\{a_{n-1}\},\{c_n\}\) 生成一棵含有 \(n\) 个点的树,其中 \(u\) 连向 \([1, ...

  2. Solution -「Gym 102979L」 Lights On The Road

    \(\mathcal{Description}\)   Link.   给定序列 \(\{w_n\}\),选择 \(i\) 位置的代价为 \(w_i\),要求每个位置要不被选择,要不左右两个位置至少被 ...

  3. Solution -「Gym 102956F」Find the XOR

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...

  4. Solution -「Gym 102956B」Beautiful Sequence Unraveling

    \(\mathcal{Description}\)   Link.   求长度为 \(n\),值域为 \([1,m]\) 的整数序列 \(\lang a_n\rang\) 的个数,满足 \(\not\ ...

  5. Solution -「Gym 102956F」Border Similarity Undertaking

    \(\mathcal{Description}\)   Link.   给定一张 \(n\times m\) 的表格,每个格子上写有一个小写字母.求其中长宽至少为 \(2\),且边界格子上字母相同的矩 ...

  6. Solution -「Gym 102956A」Belarusian State University

    \(\mathcal{Description}\)   Link.   给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...

  7. Solution -「Gym 102798I」Sean the Cuber

    \(\mathcal{Description}\)   Link.   给定两个可还原的二阶魔方,求从其中一个状态拧到另一个状态的最小步数.   数据组数 \(T\le2.5\times10^5\). ...

  8. Solution -「Gym 102798K」Tree Tweaking

    \(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\),求任意重排 \(p_{l..r}\) 的元素后,将 \(\{p_n\}\) 依次插入二叉搜索树 ...

  9. Solution -「Gym 102798E」So Many Possibilities...

    \(\mathcal{Description}\)   Link.   给定非负整数序列 \(\{a_n\}\) 和 \(m\),每次随机在 \(\{a\}\) 中取一个非零的 \(a_i\)(保证存 ...

随机推荐

  1. android 解决报错 installation failed with message Failed to finalize session : INSTALL_PARSE_FAILED_UNEXPECTED_EXCEPTION: Failed parse during installPackageLI: Failed to read manifest from /xx/xx/xx.apk

    新工程启动报错 怎么办? 解决: 将这个选项去掉勾选后点击ok即可

  2. MySQL 开启和关闭远程访问

    MySQL 开启和关闭远程访问权限 一.开启MySQL/MariaDB的远程访问权限 [root@localhost ~]# mysql -u root -p MariaDB [(none)]> ...

  3. PowerShell 管道符之Select的使用方法【二】

    这次讲解Select中的第二个方法:String 在我们的ISE编辑器中输入如下命令 Select-String - 可以了解到,原来这是正则表达式,它提供了一些额外的正则方法.具体如何使用,可以自行 ...

  4. Maven打包方式整理

    方法一 maven-jar-plugin和maven-dependency-plugin插件打包 <build> <plugins> <plugin> <gr ...

  5. vue爬坑之路(axios 封装篇)

    第一步还是先下载axios cnpm install axios -S第二步建立一个htttp.js import axios from 'axios'; import { Message } fro ...

  6. spring 事务失效的几种场景

    以下场景是基于mysql数据库,InnoDB的存储引擎. 一.没有添加@Transactional注解 二.方法声明是private或者static 三.没有抛出异常而是try catch了异常 下面 ...

  7. 【刷题-LeetCode】238. Product of Array Except Self

    Product of Array Except Self Given an array nums of n integers where n > 1, return an array outpu ...

  8. vscode控制台中文乱码

    原因 vscode中文控制台乱码原因是调用的cmd的显示. 所以问题实际上是cmd的显示中文乱码问题.当然还有其他方法仅仅修改vscode的显示,这里不在说明. cmd中国版本windows默认是93 ...

  9. K8s配置配置存活、就绪和启动探测器

    kubelet 使用存活探测器来知道什么时候要重启容器. 例如,存活探测器可以捕捉到死锁(应用程序在运行,但是无法继续执行后面的步骤). 这样的情况下重启容器有助于让应用程序在有问题的情况下更可用. ...

  10. 学习Java第14天

    今天成功安装了MySQL Visual Studio Code 准备试着学习HTML+CSS了 明天开始认识HTML和CSS学会软件的使用 今天安装调试这些东西属实费了点劲,可能电脑配置较低吧,还有点 ...