题目描述

给出一个n个顶点m条边的无向无权图,顶点编号为1−n。问从顶点1开始,到其他每个点的最短路有几条。

输入格式

第一行包含2个正整数n,m,为图的顶点数与边数。

接下来M行,每行2个正整数x,y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。

输出格式

共N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出ans mod 100003后的结果即可。如果无法到达顶点i则输出0。


一道简单题, 用SPFA去更新最短路, 每次更新时, 即dis[y] > dis[x] + v, 点y的最短路条数就等于点x的最短路条数, 而当dis[y] = dis[x] + v时, 就说明该点产生了第二条最短路, 即点y最短路的条数加上点x最短路的条数。 即使当前不是最短路, 但是当更新到最短路时, 该最短路条数数组会重置成此时点x的最短路条数, 所以这个算法是正确的。

(补更~) 虽然SPFA过了边权为1的数据, 但今天机房某位大佬出了一个边权不为1的数据, 卡掉了SPFA, 然后我就知道要用Dijkstra算法, 具体SPFA算法为什么被卡我也不是很知道。

被卡数据如下 :

4 4
1 2 2
2 3 1
1 3 3
3 4 1

代码已更新:

#include <bits/stdc++.h>

using namespace std;

typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e6 + 100;
const int MAXM = 3e3 + 10; template < typename T > inline void read(T &x) {
x = 0; T ff = 1, ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') ff = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *=ff;
} template < typename T > inline void write(T x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
} int n, m;
int dis[MAXN], vis[MAXN], a[MAXN];
int lin[MAXN], tot = 0;
struct edge {
int y, v, next;
}e[MAXN]; inline void add(int xx, int yy, int vv) {
e[++tot].y = yy;
e[tot].v = vv;
e[tot].next = lin[xx];
lin[xx] = tot;
} /*inline void SPFA() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, false, sizeof(vis));
queue < int > q;
dis[1] = 0; a[1] = 1;
q.push(1);
while(!q.empty()) {
int x = q.front(); q.pop();
vis[x] = false;
for(int i = lin[x], y; i; i = e[i].next) {
if(dis[y = e[i].y] > dis[x] + 1) {
dis[y] = dis[x] + 1;
a[y] = a[x];
if(!vis[y]) {
vis[y] = true;
q.push(y);
}
}
else if(dis[y] == dis[x] + 1) {
a[y] += a[x];
a[y] %= 100003;
}
}
}
}*/ inline void Dijkstra() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, false, sizeof(vis));
priority_queue < pair < int, int > > q;
q.push(make_pair(0, 1));
dis[1] = 0;
a[1] = 1;
while(!q.empty()) {
int x = q.top().second;
q.pop();
if(vis[x]) continue;
for(int i = lin[x], y; i; i = e[i].next) {
if(dis[y = e[i].y] == dis[x] + e[i].v) a[y] = (a[y] + a[x]) % 100003;
else if(dis[y] > dis[x] + e[i].v) {
a[y] = a[x];
dis[y] = dis[x] + e[i].v;
q.push(make_pair(-dis[y], y));
}
}
}
} int main() {
read(n); read(m);
for(int i = 1; i <= m; ++i) {
int u, v;
read(u); read(v);
if(u == v) continue;
add(u, v, 1);
add(v, u, 1);
}
Dijkstra();
for(int i = 1; i <= n; ++i) {
write(a[i]);
puts("");
}
return 0;
}

最短路计数(SPFA× Dijkstra√)的更多相关文章

  1. 「LuoguP1144」 最短路计数(dijkstra

    题目描述 给出一个NN个顶点MM条边的无向无权图,顶点编号为1-N1−N.问从顶点11开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含22个正整数N,MN,M,为图的顶点数与边 ...

  2. ACM-最短路(SPFA,Dijkstra,Floyd)之最短路——hdu2544

    ***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...

  3. 最短路模板[spfa][dijkstra+堆优化][floyd]

    借bzoj1624练了一下模板(虽然正解只是floyd) spfa: #include <cstdio> #include <cstring> #include <alg ...

  4. 洛谷最短路计数SPFA

    题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...

  5. P1144 最短路计数 题解 最短路应用题

    题目链接:https://www.luogu.org/problem/P1144 其实这道题目是最短路的变形题,因为数据范围 \(N \le 10^6, M \le 2 \times 10^6\) , ...

  6. Dijkstra再理解+最短路计数

    众所周知,Dijkstra算法是跑单源最短路的一种优秀算法,不过他的缺点在于难以处理负权边. 但是由于在今年的NOI赛场上SPFA那啥了(嗯就是那啥了),所以我们还是好好研究一下Dij的原理和它的优化 ...

  7. 【SPFA】 最短路计数

    最短路计数 [问题描述]   给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式]   输入第一行包含2个正整数N,M,为图的顶点数与边数. ...

  8. 洛谷P1144 最短路计数(SPFA)

    To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...

  9. BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数

    Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...

  10. 习题:最短路计数(SPFA最短路计数)

    最短路计数(洛谷1144)题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条.输入输出格式输入格式:输入第一行包含2个正整数N,M,为图的顶点数 ...

随机推荐

  1. 288 day05_异常,线程

    day05 [异常.线程] 主要内容 异常.线程 教学目标 [ ] 能够辨别程序中异常和错误的区别 [ ] 说出异常的分类 [ ] 说出虚拟机处理异常的方式 [ ] 列举出常见的三个运行期异常 [ ] ...

  2. 一起搞懂PHP的错误和异常(二)

    上回文章中我们讲到了错误是编译和语法运行时会出现的,它们与逻辑无关,是程序员在码代码时不应该出现的,也就是说,这些错误应该是尽量避免带到线上环境的,他们不能通过try...catch捕获到.而异常则正 ...

  3. Charles抓包工具过滤网络请求

    Charles是一个HTTP代理服务器,HTTP监视器,反转代理服务器,当浏览器连接Charles的代理访问互联网时,Charles可以监控浏览器发送和接收的所有数据.它允许一个开发者查看所有连接互联 ...

  4. Python调用函数带括号和不带括号的区别

    1.不带括号时,调用的是这个函数本身 ,是整个函数体,是一个函数对象,不需等该函数执行完成 2.带括号(此时必须传入需要的参数),调用的是函数的return结果,需要等待函数执行完成的结果 如果函数本 ...

  5. shell 脚本获取数组字符串长度

    #!/bin/sh source /etc/init.d/functions funOne() { array=(I am dfh kjlhfjksdf sdfj jdkfhaskl mjjoldfu ...

  6. 最详细STL(一)vector

    vector的本质还是数组,但是可以动态的增加和减少数组的容量(当数组空间内存不足时,都会执行: 分配新空间-复制元素-释放原空间),首先先讲讲vector和数组的具体区别 一.vector和数组的区 ...

  7. 官宣!ElasticJob 3.0.0 版本正式发布

    ElasticJob 是面向互联网生态和海量任务的分布式调度解决方案,由两个相互独立的子项目 ElasticJob-Lite 和 ElasticJob-Cloud 组成.它通过弹性调度.资源管控.以及 ...

  8. 这几种Java异常处理方法,你会吗?

    摘要:我们在软件开发的过程中,任何语言的开发过程中都离不开异常处理. 本文分享自华为云社区<Java异常处理学习总结>,作者: zekelove . 我们在软件开发的过程中,任何语言的开发 ...

  9. 洛谷4755 Beautiful Pair (分治)

    题目描述 小D有个数列 \(a\),当一个数对 \((i,j)(i\le j)\) 满足\(a_i\)和\(a_j\)的积 不大于 \(a_i \cdots a_j\) 中的最大值时,小D认为这个数对 ...

  10. Python 实现断网自动重连

    为了实现 断网了,自动连接网络原理:每隔一段时间ping一下百度,判断网络状态,没有联网的话,就模仿浏览器发一条Post给服务器import urllibimport hashlibimport su ...