最短路计数(SPFA× Dijkstra√)
题目描述
给出一个n个顶点m条边的无向无权图,顶点编号为1−n。问从顶点1开始,到其他每个点的最短路有几条。
输入格式
第一行包含2个正整数n,m,为图的顶点数与边数。
接下来M行,每行2个正整数x,y,表示有一条顶点x连向顶点y的边,请注意可能有自环与重边。
输出格式
共N行,每行一个非负整数,第i行输出从顶点1到顶点i有多少条不同的最短路,由于答案有可能会很大,你只需要输出ans mod 100003后的结果即可。如果无法到达顶点i则输出0。
一道简单题, 用SPFA去更新最短路, 每次更新时, 即dis[y] > dis[x] + v, 点y的最短路条数就等于点x的最短路条数, 而当dis[y] = dis[x] + v时, 就说明该点产生了第二条最短路, 即点y最短路的条数加上点x最短路的条数。 即使当前不是最短路, 但是当更新到最短路时, 该最短路条数数组会重置成此时点x的最短路条数, 所以这个算法是正确的。
(补更~) 虽然SPFA过了边权为1的数据, 但今天机房某位大佬出了一个边权不为1的数据, 卡掉了SPFA, 然后我就知道要用Dijkstra算法, 具体SPFA算法为什么被卡我也不是很知道。
被卡数据如下 :
4 4
1 2 2
2 3 1
1 3 3
3 4 1
代码已更新:
#include <bits/stdc++.h> using namespace std; typedef long long ll;
const int INF = 0x3f3f3f3f;
const int MAXN = 2e6 + 100;
const int MAXM = 3e3 + 10; template < typename T > inline void read(T &x) {
x = 0; T ff = 1, ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') ff = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x *=ff;
} template < typename T > inline void write(T x) {
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
} int n, m;
int dis[MAXN], vis[MAXN], a[MAXN];
int lin[MAXN], tot = 0;
struct edge {
int y, v, next;
}e[MAXN]; inline void add(int xx, int yy, int vv) {
e[++tot].y = yy;
e[tot].v = vv;
e[tot].next = lin[xx];
lin[xx] = tot;
} /*inline void SPFA() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, false, sizeof(vis));
queue < int > q;
dis[1] = 0; a[1] = 1;
q.push(1);
while(!q.empty()) {
int x = q.front(); q.pop();
vis[x] = false;
for(int i = lin[x], y; i; i = e[i].next) {
if(dis[y = e[i].y] > dis[x] + 1) {
dis[y] = dis[x] + 1;
a[y] = a[x];
if(!vis[y]) {
vis[y] = true;
q.push(y);
}
}
else if(dis[y] == dis[x] + 1) {
a[y] += a[x];
a[y] %= 100003;
}
}
}
}*/ inline void Dijkstra() {
memset(dis, 0x3f, sizeof(dis));
memset(vis, false, sizeof(vis));
priority_queue < pair < int, int > > q;
q.push(make_pair(0, 1));
dis[1] = 0;
a[1] = 1;
while(!q.empty()) {
int x = q.top().second;
q.pop();
if(vis[x]) continue;
for(int i = lin[x], y; i; i = e[i].next) {
if(dis[y = e[i].y] == dis[x] + e[i].v) a[y] = (a[y] + a[x]) % 100003;
else if(dis[y] > dis[x] + e[i].v) {
a[y] = a[x];
dis[y] = dis[x] + e[i].v;
q.push(make_pair(-dis[y], y));
}
}
}
} int main() {
read(n); read(m);
for(int i = 1; i <= m; ++i) {
int u, v;
read(u); read(v);
if(u == v) continue;
add(u, v, 1);
add(v, u, 1);
}
Dijkstra();
for(int i = 1; i <= n; ++i) {
write(a[i]);
puts("");
}
return 0;
}
最短路计数(SPFA× Dijkstra√)的更多相关文章
- 「LuoguP1144」 最短路计数(dijkstra
题目描述 给出一个NN个顶点MM条边的无向无权图,顶点编号为1-N1−N.问从顶点11开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含22个正整数N,MN,M,为图的顶点数与边 ...
- ACM-最短路(SPFA,Dijkstra,Floyd)之最短路——hdu2544
***************************************转载请注明出处:http://blog.csdn.net/lttree************************** ...
- 最短路模板[spfa][dijkstra+堆优化][floyd]
借bzoj1624练了一下模板(虽然正解只是floyd) spfa: #include <cstdio> #include <cstring> #include <alg ...
- 洛谷最短路计数SPFA
题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M,为图的顶点数与边数. 接下来M行 ...
- P1144 最短路计数 题解 最短路应用题
题目链接:https://www.luogu.org/problem/P1144 其实这道题目是最短路的变形题,因为数据范围 \(N \le 10^6, M \le 2 \times 10^6\) , ...
- Dijkstra再理解+最短路计数
众所周知,Dijkstra算法是跑单源最短路的一种优秀算法,不过他的缺点在于难以处理负权边. 但是由于在今年的NOI赛场上SPFA那啥了(嗯就是那啥了),所以我们还是好好研究一下Dij的原理和它的优化 ...
- 【SPFA】 最短路计数
最短路计数 [问题描述] 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. [输入格式] 输入第一行包含2个正整数N,M,为图的顶点数与边数. ...
- 洛谷P1144 最短路计数(SPFA)
To 洛谷.1144 最短路计数 题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 输入第一行包含2个正整数N,M ...
- BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数
Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...
- 习题:最短路计数(SPFA最短路计数)
最短路计数(洛谷1144)题目描述 给出一个N个顶点M条边的无向无权图,顶点编号为1-N.问从顶点1开始,到其他每个点的最短路有几条.输入输出格式输入格式:输入第一行包含2个正整数N,M,为图的顶点数 ...
随机推荐
- 2.1Java基础
2.1.9面向对象的三大特性(携程): 封装:把一个对象的属性隐藏在对象内部,外部对象不能直接访问这个对象的内部信息.但是可以提供一些可以被外界访问的方法来操作属性.就比如我们常常创建一个类,把他的属 ...
- Ebiten-纯Golang开发的跨平台游戏引擎
Go语言不是让你玩的啊喂! 昨天跟好基友聊开发的事,他说他等着闲下来的时候就用PYGame写个像那个最近挺火的"文X游X"一样的游戏.(没收广告费啊!) 基友突然嘲笑我:" ...
- 安卓gradle时报错"ERROR: Plugin with id 'com.android.application' not found."
在build.gradle中更改gradle插件版本号 buildscript { repositories { google() jcenter() } dependencies { //版本号请根 ...
- Django学习day02随堂笔记
每日测验 """ 今日考题 1.谈谈你对web框架的认识,简述web框架请求流程 2.python三大主流web框架的区别 3.安装django需要注意的事项有哪些(最少 ...
- 开源物联网平台(Thingsboard)-编译
环境准备 Jdk8+ (3.2.2版本开始使用Jdk11) Maven3.2.1+ release-3.2分支 获取代码 ##get source from mirror git clone http ...
- Java基础系列(39)- 二维数组
多维数组 多维数组可以看成是数组的数组,比如二维数组就是一个特殊的一维数组,其每一个元素都是一个一维数组. 二维数组 int a[][]=new int[2][5]; 解析:以上二维数组a可以看成一个 ...
- Linux系列(1) - 使用Hyper-V安装Linux系统
前言 使用工具:Hyper-V,补充:hyper-v是一项技术,而vmware是一款软件.具体区别自行百度 LINUX版本:CentOS-8.4.2105-x86_64-dvd1.iso Window ...
- Java学习之随堂笔记系列——day02
昨天内容回顾1.安装jdk和配置环境变量 配置JAVA_HOME和path,只要配置成功之后就可以直接使用java和javac命令.2.HelloWorld案例3.java的基础语法 注释:给程序的解 ...
- python学习笔记(六)-集合
集合是一个无序不重复元素的集.基本功能包括关系测试和消除重复元素.集合对象还支持union(联合),intersection(交),difference(差)和sysmmetric differenc ...
- 没想到 TCP 协议,还有这样的骚操作。。。
大家好,我是小林. 昨晚有位读者问了我这么个问题: 大概意思是,一个已经建立的 TCP 连接,客户端中途宕机了,而服务端此时也没有数据要发送,一直处于 establish 状态,客户端恢复后,向服务端 ...