洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)
纪念博客又一次爆炸了
首先,对于本题中,我们可以发现,保证存在正整数解,就表示一定费用会降低。又因为一旦加大的流量,费用一定会变大,所以总流量一定是不变的
那么我们这时候就需要考虑一个退流的过程
对于原图每一条\(u->v,c>0\)的边,我们在新图中建一条\(v->u,价值是a-d\)
表示退这个流要花费的费用,相当于退流的过程
对于原图任意一条\(u->v\)的边,我们在新图中建一条\(u->v,价值是b+d\)的边,相当于扩流的过程
那么只有成环的时候,才能满足流量平衡这个条件。
正好和消圈定理相类似
所谓消圈定理
就是在某个流 f 中,如果其对应的残余网络没有负圈(剩余流量为 0 的边视为不存在)
那它一定就是当前流量下的最小费用流。
反之亦然。
即「f 是最小费用流等价于其残余网络中没有负圈」。
那根据题目要求的是个比例,那我们一定是只修改最大的那个环就行。
那么我们考虑分数规划一下
二分\(mid <= max(\frac{x-y}{k})\)
\]
\]
由于在一个环中,k就是这个环的大小,我们可以考虑把每个\(mid\)分配到每个边,也就是转化成了
每条边的权值在原来新图的基础上\(+mid\),然后\(check\)是否存在负(0)环
这时候直接上\(spfa\)就好,
不过之前的问题转化,还是很有难度啊
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 50010;
const int maxm = 1e6+1e2;
struct Node{
int u,v,a,b,c,d;
};
Node a[maxn];
int point[maxn],nxt[maxm],to[maxm];
int inque[maxn];
int vis[maxn];
double val[maxm];
queue<int> q;
int cnt,n,m;
double dis[maxn];
int x[maxm],y[maxm];
double w[maxm];
double l=0,r=1e9;
int tmp;
double ans;
bool flag;
int s,t;
void addedge(int x,int y,double w)
{
//cout<<x<<" "<<y<<" "<<w<<endl;
nxt[++cnt]=point[x];
to[cnt]=y;
val[cnt]=w;
point[x]=cnt;
}
void spfa(int s)
{
while (!q.empty()) q.pop();
for (int i=1;i<=n;i++) dis[i]=1e9;
memset(inque,0,sizeof(inque));
memset(vis,0,sizeof(vis));
dis[s]=0;
inque[s]=1;
q.push(s);
while (!q.empty())
{
int x=q.front();
q.pop();
vis[x]=0;
inque[x]++;
if (inque[x]>=n+1)
{
flag=true;
return;
}
//cout<<1<<endl;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (dis[p]>=dis[x]+val[i])
{
dis[p]=dis[x]+val[i];
if (!vis[p])
{
q.push(p);
vis[p]=1;
}
}
}
}
}
bool check(double mid)
{
cnt=0;
flag=false;
memset(point,0,sizeof(point));
for (int i=1;i<=tmp;i++)
addedge(x[i],y[i],w[i]+mid);
spfa(n-1);
if (flag) return true;
else return false;
}
int main()
{
n=read(),m=read();
n+=2;
for (int i=1;i<=m;i++)
{
int u=read(),v=read(),a=read(),b=read(),c=read(),d=read();
++tmp;
x[tmp]=u;
y[tmp]=v;
w[tmp]=b+d;
if (c>0)
{
++tmp;
x[tmp]=v;
y[tmp]=u;
w[tmp]=a-d;
}
}
// cout<<check(103)<<endl;
// return 0;
while (r-l>1e-3){
double mid = (l+r)/2;
if (check(mid)) ans=mid,l=mid;
else r=mid;
}
printf("%.2lf\n",ans);
return 0;
}
洛谷3288 SCOI2014方伯伯运椰子(分数规划+spfa)的更多相关文章
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- [bzoj3597][scoi2014]方伯伯运椰子——分数规划,负环
题解 目标就是 \[Maximize\ \lambda = \frac{X-Y}{k}\] 按照分数规划的一般规律, 构造: \[g(\lambda) = \lambda k + Y - X\] 由于 ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树
洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户 ...
- BZOJ 3597 SCOI2014 方伯伯送椰子 网络流分析+SPFA
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3597 Description 四川的方伯伯为了致富,决定引进海南的椰子树.方伯伯的椰子园十 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
随机推荐
- indexedDB数据库创建
1.首先需要使用使用indexedDB.open()方法,打开数据库 2.通过createObjectStore方法创建表, 创建表之后, 这个表通过createIndex方法创建索引 3.通过tra ...
- Kubernetes-kubectl介绍
前言 本篇是Kubernetes第三篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战.本篇重要介绍kubectl的使用. Kubernetes系列文章: Kubernetes介绍 Kuber ...
- 剑指 Offer 34. 二叉树中和为某一值的路径
剑指 Offer 34. 二叉树中和为某一值的路径 输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径.从树的根节点开始往下一直到叶节点所经过的节点形成一条路径. 示例: 给定如下 ...
- 使用HttpRunner3+Allure+Jenkins实现Web接口自动化测试
陆续给不同项目做了Web接口自动化测试,在尝试不同方法的同时会有新的体会.最近用到了HttpRunner3,本文将记录使用HttpRunner3+Allure+Jenkins在项目中快速实现Web接口 ...
- 前端搭建Linux云服务器,Nginx配置详解及部署自己项目到服务器上
目录 搭建Linux云服务器 购买与基本配置 链接linux服务器 目录结构 基本命令 软件安装 Linux 系统启动 启动过程 运行级别 Nginx详解 1.安装 方式一:yum安装 方式二:自定义 ...
- 腾讯与Intel就云游戏的探讨
今天去参加了在腾讯北京总部的腾讯音视频技术 HUB 技术巡回大会,对其中的云游戏应用的探讨格外感兴趣.正巧最近元宇宙概念很火,这篇文章就大会中对云游戏的探讨进行总结和汇报. 讲述一下来自Intel的工 ...
- 第三课:GDB 常用的调试命令概览
先给出一个常用命令的列表,后面会结合具体的例子详细介绍每个命令的用法. 命令名称 命令缩写 命令说明 run r 运行一个程序 continue c 让暂停的程序继续运行 next n 运行到下一行 ...
- Java基础之代理模式
代理模式是常见的设计模式之一,意图在为指定对象提供一种代理以控制对这个对象的访问.Java中的代理分为动态代理和静态代理,动态代理在Java中的应用比较广泛,比如Spring的AOP实现.远程RPC调 ...
- 定时器及PWM
1 定时器 1.1 定时器分类 对于STM32来说,定时器可分为基本定时器.通用定时器.高级定时器三类,后者包括前者的全部功能.以stm32f1系列为例,TIM6和TIM7为基本定时器,TIM2~TI ...
- Spring Cloud Eureka 之常用配置解析
[原创内容,转载.引用请注明出处] 1. 配置项解析 1.1 通用配置 # 应用名称,将会显示在Eureka界面的应用名称列 spring.application.name=config-servic ...