有\(N\)件物品和一个容量是\(V\)的背包。每件物品只能使用一次。

第\(i\)件物品的体积是\(v_i\),价值是\(w_i\)。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,\(N\),\(V\),用空格隔开,分别表示物品数量和背包容积。

接下来有 \(N\) 行,每行两个整数 \(v_i\),\(w_i\),用空格隔开,分别表示第 \(i\) 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

\(0<N,V≤1000\)

\(0<v_i,w_i≤1000\)

输入样例

4 5

1 2

2 4

3 4

4 5

输出样例:

8


思路:



借助闫式DP分析法、把这个问题从集合的角度来分析,将问题分成状态表示和状态计算。

状态表示:

本题的状态可以用f(i, j)来表示、这表示的是从前\(i\)个物品中选、选出物体的总体积小于等于\(j\)的物品。

状态计算:

那么、借助\(f(i, j)\)、可以在集合的角度将问题一分为二来看、即所有不含\(i\)的物品和含\(i\)的物品。

不含\(i\):即、从1、2···i-1、中选、选出物体的总价值不大于\(j\)的物品、故容易表示为\(f(i,j) = f(i - 1, j)\)。

含\(i\)的物品:这里我们不好直接求到这个状态、可以先减去所有不含\(i\)的、再将权重加回去、此时可以得到状态\(f(i - 1, j - v_i) + w_i\)。(不一定存在、\(j >= v_i\) 时存在)


代码:

#include <iostream>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N][N]; // 状态数组 int main()
{
int n, m; cin >> n >> m; for(int i = 1 ; i <= n ; i ++ ) cin >> v[i] >> w[i]; // 从第一件物品开始选、价值可以为0
for(int i = 1 ; i <= n ; i ++ )
for(int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if(j >= v[i])
{
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
} // 从前n个物品中选、总价值不超过m即为所求
cout << f[n][m] << endl; return 0;
}

ACwing02.01背包问题的更多相关文章

  1. 01背包问题:POJ3624

    背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...

  2. 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)

    Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...

  3. HDU 1864最大报销额 01背包问题

    B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  4. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  5. YTU 2335: 0-1背包问题

    2335: 0-1背包问题 时间限制: 1 Sec  内存限制: 128 MB 提交: 15  解决: 12 题目描述 试设计一个用回溯法搜索子集空间树的函数.该函数的参数包括结点可行性判定函数和上界 ...

  6. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

  7. HDU2602 (0-1背包问题)

      N - 01背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Descri ...

  8. poj3624 简单的01背包问题

    问题描述: 总共有N种宝石供挑选,宝石i的重量为Wi,吸引力为Di,只可以用一次.Bessie最多可负担的宝石手镯总重量为M.给出N,M,Wi,Di,求M. 非常标准的01背包问题.使用了优化的一维数 ...

  9. hdu5188 加限制的01背包问题

    http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...

随机推荐

  1. 如何从vcf文件中批量提取一系列基因的SNP位点?

    目录 需求 示例文件 代码实现 补充说明 需求 客户的一个简单需求: 我有一批功能基因位点,想从重测序的群体材料中找到这些位点,如何批量快速获得? 示例文件 gene.txt test.vcf 代码实 ...

  2. 混合(Pooling)样本测序研究

    目录 1.混合测序基础 2. 点突变检测 3. BSA 4. BSR 5. 混合样本GWAS分析 6. 混合样本驯化研究 7. 小结 1.混合测序基础 测序成本虽然下降了,但对于植物育种应用研究来说还 ...

  3. 关于stm32不常用的中断,如何添加, 比如timer10 timer11等

    首先可以从keil中找到 比如找到定时器11的溢出中断,如上图是26 然后,配置定时器11 溢出中断的时候,我就在:下面填上这个变量. 之后要写中断服务函数,也就是发生中断后要跳转到的函数. 需要知道 ...

  4. maven根据profile,resources,filters来区分部署环境

    项目过程中,在不同的阶段,分别需要部署开发环境,测试环境,线上环境.如果都用一套配置文件,很容易弄乱,所以维持多套配置文件很有必要. maven提供了一组属性以供开发人员灵活搭配,可以根据环境来打包, ...

  5. Springboot,SSM及SSH的概念、优点、区别及缺点

    Springboot的概念: 是提供的全新框架,使用来简化Spring的初始搭建和开发过程,使用了特定的方式来进行配置,让开发人员不在需要定义样板化的配置.此框架不需要配置xml,依赖于像MAVEN这 ...

  6. 第一章-Flink介绍-《Fink原理、实战与性能优化》读书笔记

    Flink介绍-<Fink原理.实战与性能优化>读书笔记 1.1 Apache Flink是什么? 在当代数据量激增的时代,各种业务场景都有大量的业务数据产生,对于这些不断产生的数据应该如 ...

  7. 【MySQL】学生成绩

    统计每个人的总成绩排名 select stu.`name`,sum(stu.score) as totalscore from stu GROUP BY `name` order by totalsc ...

  8. 【C/C++】编码(腾讯)

    假定一种编码的编码范围是a ~ y的25个字母,从1位到4位的编码,如果我们把该编码按字典序排序,形成一个数组如下: a, aa, aaa, aaaa, aaab, aaac, - -, b, ba, ...

  9. EntityFramework Core (一)记一次 .net core 使用 ef 6

    使用传统的sql去操作数据库虽然思路更加清晰,对每一步数据库读写操作都能监控到,但是对大数据存储,或存储规则复杂的程序就需要编写大量的SQL语句且不易维护..orm大大方便了复杂的数据库读写操作, 让 ...

  10. SpringBoot自定义控制层参数解析

    一.背景 在Spring的Controller中,我们通过@RequestParam或@RequestBody就可以将请求中的参数映射到控制层具体的参数中,那么这个是怎么实现的呢?如果我现在控制层中的 ...