有\(N\)件物品和一个容量是\(V\)的背包。每件物品只能使用一次。

第\(i\)件物品的体积是\(v_i\),价值是\(w_i\)。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,\(N\),\(V\),用空格隔开,分别表示物品数量和背包容积。

接下来有 \(N\) 行,每行两个整数 \(v_i\),\(w_i\),用空格隔开,分别表示第 \(i\) 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

\(0<N,V≤1000\)

\(0<v_i,w_i≤1000\)

输入样例

4 5

1 2

2 4

3 4

4 5

输出样例:

8


思路:



借助闫式DP分析法、把这个问题从集合的角度来分析,将问题分成状态表示和状态计算。

状态表示:

本题的状态可以用f(i, j)来表示、这表示的是从前\(i\)个物品中选、选出物体的总体积小于等于\(j\)的物品。

状态计算:

那么、借助\(f(i, j)\)、可以在集合的角度将问题一分为二来看、即所有不含\(i\)的物品和含\(i\)的物品。

不含\(i\):即、从1、2···i-1、中选、选出物体的总价值不大于\(j\)的物品、故容易表示为\(f(i,j) = f(i - 1, j)\)。

含\(i\)的物品:这里我们不好直接求到这个状态、可以先减去所有不含\(i\)的、再将权重加回去、此时可以得到状态\(f(i - 1, j - v_i) + w_i\)。(不一定存在、\(j >= v_i\) 时存在)


代码:

#include <iostream>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N][N]; // 状态数组 int main()
{
int n, m; cin >> n >> m; for(int i = 1 ; i <= n ; i ++ ) cin >> v[i] >> w[i]; // 从第一件物品开始选、价值可以为0
for(int i = 1 ; i <= n ; i ++ )
for(int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if(j >= v[i])
{
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
} // 从前n个物品中选、总价值不超过m即为所求
cout << f[n][m] << endl; return 0;
}

ACwing02.01背包问题的更多相关文章

  1. 01背包问题:POJ3624

    背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...

  2. 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)

    Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...

  3. HDU 1864最大报销额 01背包问题

    B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  4. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  5. YTU 2335: 0-1背包问题

    2335: 0-1背包问题 时间限制: 1 Sec  内存限制: 128 MB 提交: 15  解决: 12 题目描述 试设计一个用回溯法搜索子集空间树的函数.该函数的参数包括结点可行性判定函数和上界 ...

  6. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

  7. HDU2602 (0-1背包问题)

      N - 01背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Descri ...

  8. poj3624 简单的01背包问题

    问题描述: 总共有N种宝石供挑选,宝石i的重量为Wi,吸引力为Di,只可以用一次.Bessie最多可负担的宝石手镯总重量为M.给出N,M,Wi,Di,求M. 非常标准的01背包问题.使用了优化的一维数 ...

  9. hdu5188 加限制的01背包问题

    http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...

随机推荐

  1. Codeforces 1483F - Exam(AC 自动机)

    Codeforces 题目传送门 & 洛谷题目传送门 一道 ACAM 的 hot tea 首先建出 ACAM.考虑枚举长串,以及短串在长串中出现的最后位置 \(j\),这个复杂度显然是 \(\ ...

  2. android 点击图片从Fragment跳转到activity

    android 点击图片从Fragment跳转到activity 在Fragment里编写 public View onCreateView(@NonNull LayoutInflater infla ...

  3. Dreamweaver 2019 软件安装教程

    下载链接:https://www.sssam.com/1220.html#软件简介 Adobe Dreamweaver,简称"DW",DW是集网页制作和管理网站于一身的所见即所得网 ...

  4. python 封装、绑定

    目录 python 封装.绑定 1.数据.方法的封装 2.隐藏属性 3.开放接口 4.绑定方法 1.对象的绑定 2.类的绑定(classmethod) 3.非绑定方法(staticmethod) 4. ...

  5. 用JS实现方块碰撞

    首先我们应用上次的内容--方块拖拽,利用方块拖拽来让两个方块进行碰撞. 我们可以先定义两个正方形方块,红色的div1,绿色的div2,我们来实现当div1碰撞div2时div2的颜色变为黄色 HTML ...

  6. Windows cmd 命令行基本操作

    Windows cmd 命令行基本操作 1. 进入到指定根目录 注意:不区分大小写 例如进入到 D 盘 2. 进入到指定的目录 例如 (如果目录文件名太长,可以使用 tab 键来自动补全.重复按可以进 ...

  7. 基于 vue-cli 的 lib-flexible 适配

    基于 vue-cli3.0 的 lib-flexible 适配方案 第一步:下载安装相关依赖 第二步:创建 vue.config.js 文件并配置 第三步:在 main.js 中引入 lib-flex ...

  8. Oracle中dbms_random包详解

    Oracle之DBMS_RANDOM包详解参考自:https://www.cnblogs.com/ivictor/p/4476031.html https://www.cnblogs.com/shen ...

  9. Oracle数据库导入与导出方法简述

    说明: 1.数据库数据导入导出方法有多种,可以通过exp/imp命令导入导出,也可以用第三方工具导出,如:PLSQL 2.如果熟悉命令,建议用exp/imp命令导入导出,避免第三方工具版本差异引起的问 ...

  10. 【手帐】Bullet Journal教程

    最近觉得自己的日程记录本有待提高,于是从今年开始开始入坑了手帐. *内容源自Bullet Journal官网.https://bulletjournal.com/pages/learn 快速笔记 Bu ...