有\(N\)件物品和一个容量是\(V\)的背包。每件物品只能使用一次。

第\(i\)件物品的体积是\(v_i\),价值是\(w_i\)。

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行两个整数,\(N\),\(V\),用空格隔开,分别表示物品数量和背包容积。

接下来有 \(N\) 行,每行两个整数 \(v_i\),\(w_i\),用空格隔开,分别表示第 \(i\) 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

\(0<N,V≤1000\)

\(0<v_i,w_i≤1000\)

输入样例

4 5

1 2

2 4

3 4

4 5

输出样例:

8


思路:



借助闫式DP分析法、把这个问题从集合的角度来分析,将问题分成状态表示和状态计算。

状态表示:

本题的状态可以用f(i, j)来表示、这表示的是从前\(i\)个物品中选、选出物体的总体积小于等于\(j\)的物品。

状态计算:

那么、借助\(f(i, j)\)、可以在集合的角度将问题一分为二来看、即所有不含\(i\)的物品和含\(i\)的物品。

不含\(i\):即、从1、2···i-1、中选、选出物体的总价值不大于\(j\)的物品、故容易表示为\(f(i,j) = f(i - 1, j)\)。

含\(i\)的物品:这里我们不好直接求到这个状态、可以先减去所有不含\(i\)的、再将权重加回去、此时可以得到状态\(f(i - 1, j - v_i) + w_i\)。(不一定存在、\(j >= v_i\) 时存在)


代码:

#include <iostream>

using namespace std;

const int N = 1010;

int v[N], w[N];
int f[N][N]; // 状态数组 int main()
{
int n, m; cin >> n >> m; for(int i = 1 ; i <= n ; i ++ ) cin >> v[i] >> w[i]; // 从第一件物品开始选、价值可以为0
for(int i = 1 ; i <= n ; i ++ )
for(int j = 0 ; j <= m ; j ++ )
{
f[i][j] = f[i - 1][j];
if(j >= v[i])
{
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
} // 从前n个物品中选、总价值不超过m即为所求
cout << f[n][m] << endl; return 0;
}

ACwing02.01背包问题的更多相关文章

  1. 01背包问题:POJ3624

    背包问题是动态规划中的经典问题,而01背包问题是最基本的背包问题,也是最需要深刻理解的,否则何谈复杂的背包问题. POJ3624是一道纯粹的01背包问题,在此,加入新的要求:输出放入物品的方案. 我们 ...

  2. 01背包问题:Charm Bracelet (POJ 3624)(外加一个常数的优化)

    Charm Bracelet    POJ 3624 就是一道典型的01背包问题: #include<iostream> #include<stdio.h> #include& ...

  3. HDU 1864最大报销额 01背包问题

    B - 最大报销额 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit St ...

  4. HDOJ 2546饭卡(01背包问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2546 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如 ...

  5. YTU 2335: 0-1背包问题

    2335: 0-1背包问题 时间限制: 1 Sec  内存限制: 128 MB 提交: 15  解决: 12 题目描述 试设计一个用回溯法搜索子集空间树的函数.该函数的参数包括结点可行性判定函数和上界 ...

  6. c语言数据结构:01背包问题-------动态规划

    两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...

  7. HDU2602 (0-1背包问题)

      N - 01背包 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Descri ...

  8. poj3624 简单的01背包问题

    问题描述: 总共有N种宝石供挑选,宝石i的重量为Wi,吸引力为Di,只可以用一次.Bessie最多可负担的宝石手镯总重量为M.给出N,M,Wi,Di,求M. 非常标准的01背包问题.使用了优化的一维数 ...

  9. hdu5188 加限制的01背包问题

    http://acm.hdu.edu.cn/showproblem.php? pid=5188 Problem Description As one of the most powerful brus ...

随机推荐

  1. C/C++ Qt MdiArea 多窗体组件应用

    MDI多窗体组件,主要用于设计多文档界面应用程序,该组件具备有多种窗体展示风格,其实现了在父窗体中内嵌多种子窗体的功能,使用MDI组件需要在UI界面中增加mdiArea控件容器,我们所有的窗体创建与操 ...

  2. CODING 代码资产安全系列之 —— 构建全链路安全能力,守护代码资产安全

    本文作者:王振威 - CODING 研发总监 CODING 创始团队成员之一,多年系统软件开发经验,擅长 Linux,Golang,Java,Ruby,Docker 等技术领域.近两年来一直在 COD ...

  3. Codeforces 632F - Magic Matrix(暴力 bitset or Prim 求最小生成树+最小瓶颈路)

    题面传送门 开始挖老祖宗(ycx)留下来的东西.jpg 本来想水一道紫题作为 AC 的第 500 道紫题的,结果发现点开了道神题. 首先先讲一个我想出来的暴力做法.条件一和条件二直接扫一遍判断掉.先将 ...

  4. mingling

    mysql> USE mon Reading table information for completion of table and column names You can turn of ...

  5. 【Python小试】使用列表解析式简化代码

    列表解析式的好处: 代码简洁 可读性强 运行快 示例 来自<Python编程>中的一个例子:同时投掷两颗面数不同的骰子(如一个6面的D6和一个10面的D10)n次,统计两个骰子点数之和,并 ...

  6. Atom编辑器速查

    简介 Atom 是 Github 开源的文本编辑器,相当于半个IDE.其特点如下: (1)免费开源,多平台支持(Windows.Mac.Linux): (2)界面美观.现代化,使用舒适: (3)多文件 ...

  7. 自定义char类型字符,django中事务

    自定义char类型字符 # 自定义char类型,继承Field父类 class MyCharField(Field): def __init__(self, max_length, *args, ** ...

  8. 35-Remove Element

    Remove Element My Submissions QuestionEditorial Solution Total Accepted: 115367 Total Submissions: 3 ...

  9. 日常Java 2021/9/29

    StringBuffer方法 public StringBuffer append(String s) 将指定的字符串追加到此字符序列. public StringBuffer reverse() 将 ...

  10. 网卡命令ifconfig

    • ifconfig • service network restart • ifdown eth0 • ifdown eth0 #linux下run networkexport USER=lizhe ...