Content

给定一个整数 \(n\),请构造出一个长度为 \(n\) 的排列 \(\{a_i\}_{i=1}^n\),使得对于每个 \(a_i\),都有 \(a_i\neq i\)。

我们称一个长度为 \(n\) 的数列为一个排列,当且仅当所有 \(1\sim n\) 的整数都出现且仅出现了一次。比如说 \([2,3,1,5,4]\) 就是一个长度为 \(5\) 的排列,而 \([1,2,2]\) 和 \([1,3,4]\) 都不是一个排列。

数据范围:\(1\leqslant t\leqslant 100,2\leqslant n\leqslant 100\)。

Solution

我发现当时的构造方法复杂了些……还是讲讲吧。

如果 \(n\) 是偶数,直接倒着输出 \(n,n-1,...,1\) 即可。

如果 \(n\) 是奇数,输出 \(n,n-1,...,\left\lfloor\dfrac {n+1}2\right\rfloor+1,1,2,...,\left\lfloor\dfrac {n+1}2\right\rfloor\) 即可。

Code


int t, n; int main() {
t = Rint;
while(t--) {
int n = Rint;
if(!(n % 2)) R(i, n, 1) printf("%d ", i);
else {
int mid = (n + 1) >> 1;
R(i, n, mid + 1) printf("%d ", i);
F(i, 1, mid) printf("%d ", i);
}
puts("");
}
return 0;
}

CF1454A Special Permutation 题解的更多相关文章

  1. 【CF1443E】Long Permutation 题解(排列生成模板)

    原题链接 题意简介 给定一个长度为 n 的排列 {1,2,3,...,n} .现有两种操作: 对某个区间 [l,r] 求和 将排列往后推 x 次 (按字典序) 其中 \(n,q \leq 2\time ...

  2. T - Permutation 题解(思维+dp)

    题目链接 题目大意 给你一个数字n和长为n-1个字符串 字符串包含'<','>' 若s[i]='<' 则代表a[i]<a[i+1] 若s[i]='>' 则代表a[i]&g ...

  3. CF1141C Polycarp Restores Permutation 题解

    Content 给定一个长度为 \(n-1\) 的序列 \(q\),问你是否能找到一个 \(1\sim n\) 的排列 \(p\),使得 \(\forall i\in[1,n)\),\(q_i=p_{ ...

  4. CF #640 (div4)

    CF640 div4 草 迟到半个月的补题 真正的懒狗 再懒就无了 D. Alice, Bob and Candies 题意:n个数字,奇数时间从左侧删数字,偶数时间从右侧删数字,每次删的数字之和必须 ...

  5. Codeforces Round #640 (Div. 4)

    比赛链接:https://codeforces.com/contest/1352 A - Sum of Round Numbers 题意 将一个十进制数的每一个非零位分离出来. 代码 #include ...

  6. POJ1426:Find The Multiple(算是bfs水题吧,投机取巧过的)

    http://poj.org/problem?id=1426 Description Given a positive integer n, write a program to find out a ...

  7. [poj2356]--Find a multiple ——鸽巢原理

    题意: 给定n个数,从中选取m个数,使得\(\sum | n\).本题使用Special Judge. 题解: 既然使用special judge,我们可以直接构造答案. 首先构造在mod N剩余系下 ...

  8. HDU 5386 Cover(模拟)

    Cover Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Subm ...

  9. 算法与数据结构基础 - 哈希表(Hash Table)

    Hash Table基础 哈希表(Hash Table)是常用的数据结构,其运用哈希函数(hash function)实现映射,内部使用开放定址.拉链法等方式解决哈希冲突,使得读写时间复杂度平均为O( ...

随机推荐

  1. 【golang必备算法】 Letecode 146. LRU 缓存机制

    力扣链接:146. LRU 缓存机制 思路:哈希表 + 双向链表 为什么必须要用双向链表? 因为我们需要删除操作.删除一个节点不光要得到该节点本身的指针,也需要操作其前驱节点的指针,而双向链表才能支持 ...

  2. 痞子衡嵌入式:嵌入式Cortex-M系统中断延迟及其测量方法简介

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是Cortex-M系统中断延迟及其测量方法. 在嵌入式领域里,实时性是个经常被我们挂在嘴边的概念,这里的实时性主要强调得是当外界事件发生时 ...

  3. GPG 使用指南

    加密与签名 在传输信息时,会面临两个典型的问题: 如何保证发出的消息,只能被预期的接收人获取? 如何保证收到的消息,确实由预期的发送人发出? 这两个问题不难理解.例如发送的邮件可能会被监听,诈骗分子可 ...

  4. 十行HTML实现增强现实--思途青岛

    你想通过网络实现增强现实吗?现在你只需要 10 行 HTML 代码!真的!让我带你看一看代码,非常简单.我们最近发布了AR.js.你不需要安装任何应用,用你的手机通过网络就能体验到强大的增强现实.但让 ...

  5. 如何根据fasta快速统计基因组大小及其各染色体长度?

    基因组长度 利用seqkit统计长度 seqkit stat test.fa 结果如下: file format type num_seqs sum_len min_len avg_len max_l ...

  6. 【Meta】16s rRNA和16s rDNA的区别

    在文章或宣传稿中经常看到两者滥用,实际上是不同的. 首先是各个字母的含义: 16S中的"S"是一个沉降系数,亦即反映生物大分子在离心场中向下沉降速度的一个指标,值越高,说明分子越大 ...

  7. 基于MS SQL Server的数据库学习安排

    序号 分类 学习内容 目标/要求 方式 学时 考核 参考资料 1 基础知识 数据库理论 理解数据库基本理论 面授 1 能阐述元素.数据记录.数据表.数据库的基本概念T-SQL语法要求 https:// ...

  8. 数据库命令补全工具mycli

    一.安装 我的数据库安装的是win版本,安装python后,直接命令行: 1 pip install mycli 即可. 二.使用 进入命令行后输入: 1 mycli -u root -p 88888 ...

  9. android Fragment跳转Fragment

    android Fragment跳转Fragment,最新的android studio3 在系统模板建立的BottomNavigationView 中跳转方式 此版本下不能用FragmentMana ...

  10. 普通用户iptables规则持久化,开机自动恢复

    本文档对于docker环境下并不适用,docker环境的iptables持久化请参考https://www.cnblogs.com/wiseo/p/15000745.html 添加iptables规则 ...