DES算法提供CBC, OFB, CFB, ECB四种模式,MAC是基于ECB实现的。

一、数据补位

DES数据加解密就是将数据按照8个字节一段进行DES加密或解密得到一段8个字节的密文或者明文,最后一段不足8个字节,按照需求补足8个字节(通常补00或者FF,根据实际要求不同)进行计算,之后按照顺序将计算所得的数据连在一起即可。

这里有个问题就是为什么要进行数据补位?主要原因是DES算法加解密时要求数据必须为8个字节。

二、ECB模式

DES ECB(电子密本方式)其实非常简单,就是将数据按照8个字节一段进行DES加密或解密得到一段8个字节的密文或者明文,最后一段不足8个字节,按照需求补足8个字节进行计算,之后按照顺序将计算所得的数据连在一起即可,各段数据之间互不影响。

三、CBC模式

DES CBC(密文分组链接方式)有点麻烦,它的实现机制使加密的各段数据之间有了联系。其实现的机理如下:

加密步骤如下:

1)首先将数据按照8个字节一组进行分组得到D1D2......Dn(若数据不是8的整数倍,用指定的PADDING数据补位)

2)第一组数据D1与初始化向量I异或后的结果进行DES加密得到第一组密文C1(初始化向量I为全零)

3)第二组数据D2与第一组的加密结果C1异或以后的结果进行DES加密,得到第二组密文C2

4)之后的数据以此类推,得到Cn

5)按顺序连为C1C2C3......Cn即为加密结果。

解密是加密的逆过程,步骤如下:

1)首先将数据按照8个字节一组进行分组得到C1C2C3......Cn

2)将第一组数据进行解密后与初始化向量I进行异或得到第一组明文D1(注意:一定是先解密再异或)

3)将第二组数据C2进行解密后与第一组密文数据进行异或得到第二组数据D2

4)之后依此类推,得到Dn

5)按顺序连为D1D2D3......Dn即为解密结果。

这里注意一点,解密的结果并不一定是我们原来的加密数据,可能还含有你补得位,一定要把补位去掉才是你的原来的数据。

  1 **
2 * DES算法
3 */
4 public class DES {
5 /**
6 *
7 * @return DES算法密钥
8 */
9 public static byte[] generateKey() {
10 try {
11
12 // DES算法要求有一个可信任的随机数源
13 SecureRandom sr = new SecureRandom();
14
15 // 生成一个DES算法的KeyGenerator对象
16 KeyGenerator kg = KeyGenerator.getInstance("DES");
17 kg.init(sr);
18
19 // 生成密钥
20 SecretKey secretKey = kg.generateKey();
21
22 // 获取密钥数据
23 byte[] key = secretKey.getEncoded();
24
25 return key;
26 } catch (NoSuchAlgorithmException e) {
27 System.err.println("DES算法,生成密钥出错!");
28 e.printStackTrace();
29 }
30
31 return null;
32 }
33
34 /**
35 * 加密函数
36 *
37 * @param data
38 * 加密数据
39 * @param key
40 * 密钥
41 * @return 返回加密后的数据
42 */
43 public static byte[] encrypt(byte[] data, byte[] key) {
44
45 try {
46
47 // DES算法要求有一个可信任的随机数源
48 SecureRandom sr = new SecureRandom();
49
50 // 从原始密钥数据创建DESKeySpec对象
51 DESKeySpec dks = new DESKeySpec(key);
52
53 // 创建一个密匙工厂,然后用它把DESKeySpec转换成
54 // 一个SecretKey对象
55 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
56 SecretKey secretKey = keyFactory.generateSecret(dks);
57
58 // using DES in ECB mode
59 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
60
61 // 用密匙初始化Cipher对象
62 cipher.init(Cipher.ENCRYPT_MODE, secretKey, sr);
63
64 // 执行加密操作
65 byte encryptedData[] = cipher.doFinal(data);
66
67 return encryptedData;
68 } catch (Exception e) {
69 System.err.println("DES算法,加密数据出错!");
70 e.printStackTrace();
71 }
72
73 return null;
74 }
75
76 /**
77 * 解密函数
78 *
79 * @param data
80 * 解密数据
81 * @param key
82 * 密钥
83 * @return 返回解密后的数据
84 */
85 public static byte[] decrypt(byte[] data, byte[] key) {
86 try {
87 // DES算法要求有一个可信任的随机数源
88 SecureRandom sr = new SecureRandom();
89
90 // byte rawKeyData[] = /* 用某种方法获取原始密匙数据 */;
91
92 // 从原始密匙数据创建一个DESKeySpec对象
93 DESKeySpec dks = new DESKeySpec(key);
94
95 // 创建一个密匙工厂,然后用它把DESKeySpec对象转换成
96 // 一个SecretKey对象
97 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
98 SecretKey secretKey = keyFactory.generateSecret(dks);
99
100 // using DES in ECB mode
101 Cipher cipher = Cipher.getInstance("DES/ECB/PKCS5Padding");
102
103 // 用密匙初始化Cipher对象
104 cipher.init(Cipher.DECRYPT_MODE, secretKey, sr);
105
106 // 正式执行解密操作
107 byte decryptedData[] = cipher.doFinal(data);
108
109 return decryptedData;
110 } catch (Exception e) {
111 System.err.println("DES算法,解密出错。");
112 e.printStackTrace();
113 }
114
115 return null;
116 }
117
118 /**
119 * 加密函数
120 *
121 * @param data
122 * 加密数据
123 * @param key
124 * 密钥
125 * @return 返回加密后的数据
126 */
127 public static byte[] CBCEncrypt(byte[] data, byte[] key, byte[] iv) {
128
129 try {
130 // 从原始密钥数据创建DESKeySpec对象
131 DESKeySpec dks = new DESKeySpec(key);
132
133 // 创建一个密匙工厂,然后用它把DESKeySpec转换成
134 // 一个SecretKey对象
135 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
136 SecretKey secretKey = keyFactory.generateSecret(dks);
137
138 // Cipher对象实际完成加密操作
139 Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
140 // 若采用NoPadding模式,data长度必须是8的倍数
141 // Cipher cipher = Cipher.getInstance("DES/CBC/NoPadding");
142
143 // 用密匙初始化Cipher对象
144 IvParameterSpec param = new IvParameterSpec(iv);
145 cipher.init(Cipher.ENCRYPT_MODE, secretKey, param);
146
147 // 执行加密操作
148 byte encryptedData[] = cipher.doFinal(data);
149
150 return encryptedData;
151 } catch (Exception e) {
152 System.err.println("DES算法,加密数据出错!");
153 e.printStackTrace();
154 }
155
156 return null;
157 }
158
159 /**
160 * 解密函数
161 *
162 * @param data
163 * 解密数据
164 * @param key
165 * 密钥
166 * @return 返回解密后的数据
167 */
168 public static byte[] CBCDecrypt(byte[] data, byte[] key, byte[] iv) {
169 try {
170 // 从原始密匙数据创建一个DESKeySpec对象
171 DESKeySpec dks = new DESKeySpec(key);
172
173 // 创建一个密匙工厂,然后用它把DESKeySpec对象转换成
174 // 一个SecretKey对象
175 SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");
176 SecretKey secretKey = keyFactory.generateSecret(dks);
177
178 // using DES in CBC mode
179 Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
180 // 若采用NoPadding模式,data长度必须是8的倍数
181 // Cipher cipher = Cipher.getInstance("DES/CBC/NoPadding");
182
183 // 用密匙初始化Cipher对象
184 IvParameterSpec param = new IvParameterSpec(iv);
185 cipher.init(Cipher.DECRYPT_MODE, secretKey, param);
186
187 // 正式执行解密操作
188 byte decryptedData[] = cipher.doFinal(data);
189
190 return decryptedData;
191 } catch (Exception e) {
192 System.err.println("DES算法,解密出错。");
193 e.printStackTrace();
194 }
195
196 return null;
197 }
198
199 public static void main(String[] args) {
200 try {
201 byte[] key = "11111111".getBytes();
202 byte[] iv = "22222222".getBytes();
203 byte[] data = DES.encrypt("ebc mode test".getBytes(), key);
204 System.out.print("EBC mode:");
205 System.out.println(new String(DES.decrypt(data, key)));
206 System.out.print("CBC mode:");
207 data = DES.CBCEncrypt("cbc mode test".getBytes(), key, iv);
208 System.out.println(new String(DES.CBCDecrypt(data, key, iv)));
209
210 } catch (Exception e) {
211 e.printStackTrace();
212 }
213 }
214 }

DES的几种填补方式 
   DES是对64位数据的加密算法,如数据位数不足64位的倍数,需要填充,补充到64位的倍数。

NoPadding 
   API或算法本身不对数据进行处理,加密数据由加密双方约定填补算法。例如若对字符串数据进行加解密,可以补充\0或者空格,然后trim

PKCS5Padding 
   加密前:数据字节长度对8取余,余数为m,若m>0,则补足8-m个字节,字节数值为8-m,即差几个字节就补几个字节,字节数值即为补充的字节数,若为0则补充8个字节的8 
   解密后:取最后一个字节,值为m,则从数据尾部删除m个字节,剩余数据即为加密前的原文

因为DES是一种block cipher,一个block要8个字节,所以要加密的东西要分成8字节的整数倍,不足的就填充。
PKCS5Padding这种填充,填的字节代表所填字节的总数:

◆JAVA加密解密-DES的更多相关文章

  1. JAVA加密解密DES对称加密算法

    下面用DES对称加密算法(设定一个密钥,然后对所有的数据进行加密)来简单举个例子. 首先,生成一个密钥KEY. 我把它保存到key.txt中.这个文件就象是一把钥匙.谁拥有它,谁就能解开我们的类文件. ...

  2. Java加密解密相关

    关于解释加密解密中的填充方案: http://laokaddk.blog.51cto.com/368606/461279/ 关于对称加密中的反馈模式: http://blog.csdn.net/aaa ...

  3. Java加密解密字符串

    http://www.cnblogs.com/vwpolo/archive/2012/07/18/2597232.html Java加密解密字符串   旧文重发:http://www.blogjava ...

  4. Java加密解密大全

    ChinaSEI系列讲义(By 郭克华)   Java加密解密方法大全                     如果有文字等小错,请多包涵.在不盈利的情况下,欢迎免费传播. 版权所有.郭克华 本讲义经 ...

  5. ◆JAVA加密解密-3DES

    从数据安全谈起       当你使用网银时,是否担心你的银行卡会被盗用?     当你和朋友用QQ进行聊天时,是否担心你的隐私会被泄露?     作为开发者,编写安全的代码比编写优雅的代码更重要,因为 ...

  6. java加密解密的学习

    注:此文章只是对如何学习java加密解密技术做一个讲解.并不涉及具体的知识介绍,如果有需要请留言,有时间我补冲长.个人觉着学习一个学习方法比学习一个知识点更有价值的多. 首先,对于加密解密知识体系没有 ...

  7. java加密解密

    java加密解密 public class MD5Util { /** * @param args */ public static void main(String[] args) { System ...

  8. password学4——Java 加密解密之消息摘要算法(MD5 SHA MAC)

    Java 加密解密之消息摘要算法(MD5 SHA MAC) 消息摘要 消息摘要(Message Digest)又称为数字摘要(Digital Digest). 它是一个唯一相应一个消息或文本的固定长度 ...

  9. java加密解密算法位运算

    一.实例说明 本实例通过位运算的异或运算符 “ ^ ” 把字符串与一个指定的值进行异或运算,从而改变每个字符串中字符的值,这样就可以得到一个加密后的字符串.当把加密后的字符串作为程序输入内容,异或运算 ...

随机推荐

  1. 编写Java程序,使用JDialog构造登录窗体

    返回本章节 返回作业目录 需求说明: 实现思路: 定义用户信息实体类User. 创建LoginDemoStart主类,初始化UI. 从UI获取用户信息并保存到User实体. 实现代码:

  2. 第三代微服务架构:基于 Go 的博客微服务实战案例,支持分布式事务

    这是一个可一键部署在 Kubernetes-Istio 集群中的,基于 Golang 的博客微服务 Demo,支持分布式事务. 项目地址:https://github.com/jxlwqq/blog- ...

  3. 分享一款开源堡垒机-jumpserver

    本文主文章地址为:https://blog.csdn.net/KH_FC JumpServer是由FIT2CLOUD(飞致远)公司旗下一款开源的堡垒机,这款也是全球首款开源的堡垒机,使用 GNU GP ...

  4. python 字典 分别根据值或键进行排序的方法

    最近经常遇到根据字母出现的频率进行排序的题目 我的思路一般是借用字典统计字母出现的频率 然后对字典按照值进行排序 但是每次按照值进行排序时 都会忘记排序方法 在此记录一下,以加深印象 字典原始值如下: ...

  5. unittest_skip跳过用例执行(3)

    在执行测试用例时,有时候有些用例是不需要执行的,比如版本迭代用例弃用,测试周期短只需要执行优先级高的用例,那我们怎么办呢?难道删除这些用例?那下次执行时如果又需要执行这些用例时,又把它补回来?这样操作 ...

  6. C++高并发场景下读多写少的解决方案

    C++高并发场景下读多写少的解决方案 概述 一谈到高并发的解决方案,往往能想到模块水平拆分.数据库读写分离.分库分表,加缓存.加mq等,这些都是从系统架构上解决.单模块作为系统的组成单元,其性能好坏也 ...

  7. IDEA安装与配置

    一.安装 二.配置 配置字体:source pro code 忽略大小写提示 自动导包 多 tab显示 设置快捷键 设置鼠标悬浮提示 设置行号和方法分隔符 设置maven 断点调试 字符编码 自动删除 ...

  8. 智能集成接口:I3 ISA-95 的应用

    介绍 多年来,使用基于制造运营管理 (MOM) 的应用程序的制造 IT 顾问试图说服制造商这些类型的应用的高价值.实时 MOM 解决方案是唯一一组能够精确优化工厂日常运营的 IT 应用程序,可为其可用 ...

  9. hisql orm update表数据更新文档

    更新 HiSql数据更新 HiSql 提供了好几种数据更新的方式下面一一介绍一下 如果你的表中增加了这四个字段 字段 描述 类型 CreateTime 创建时间 DateTime CreateName ...

  10. 问题记录——BigDecimal保留两位小数及格式化成百分比

    1.函数总结 BigDecimal.setScale()方法用于格式化小数点 setScale(1)表示保留一位小数,默认用四舍五入方式 setScale(1,BigDecimal.ROUND_DOW ...