https://www.zhihu.com/question/277325426

https://github.com/jinglescode/reinforcement-learning-tic-tac-toe/blob/master/README.md

Intuition

After a long day at work, you are deciding between 2 choices: to head home and write a Medium article or hang out with friends at a bar. If you choose to hang out with friends, your friends will make you feel happy; whereas heading home to write an article, you’ll end up feeling tired after a long day at work. In this example, enjoying yourself is a reward and feeling tired is viewed as a negative reward, so why write articles?

Because in life, we don’t just think about immediate rewards; we plan a course of actions to determine the possible future rewards that may follow. Perhaps writing an article may brush up your understanding of a particular topic really well, get recognised and ultimately lands you that dream job you’ve always wanted. In this scenario, getting your dream job is a delayed reward from a list of actions you took, then we want to assign some value for being at those states (for example “going home and write an article”). In order to determine the value of a state, we call this the “value function”.

So how do we learn from our past? Let’s say you made some great decisions and are in the best state of your life. Now look back at the various decisions you’ve made to reach this stage: what do you attribute your success to? What are the previous states that led you to this success? What are the actions you did in the past that led you to this state of receiving this reward? How is the action you are doing now related to the potential reward you may receive in the future?

Reinforcement Learning — Implement TicTacToe

How to use reinforcement learning to play tic-tac-toe

https://github.com/MJeremy2017/reinforcement-learning-implementation/tree/master/TicTacToe

直接看这个「井字棋」的代码,结合反复阅读这几篇文章,慢慢理解 Q-Learning 是个什么东西,每个参数的意义又是什么。

https://github.com/ZuzooVn/machine-learning-for-software-engineers

https://machinelearningmastery.com/machine-learning-for-programmers/#comment-358985

https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56

What’s ‘Q’?

The ‘q’ in q-learning stands for quality. Quality in this case represents how useful a given action is in gaining some future reward.

How Does Learning Rate Decay Help Modern Neural Networks?

https://smartlabai.medium.com/reinforcement-learning-algorithms-an-intuitive-overview-904e2dff5bbc

RL 分为 Model-free 和 Model-based 两类

Q-Learning 就属于 Model-free

http://incompleteideas.net/book/the-book-2nd.html

http://incompleteideas.net/book/code/code2nd.html

Reinforcement Learning 强化学习入门的更多相关文章

  1. [Reinforcement Learning] 强化学习介绍

    随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化 ...

  2. The categories of Reinforcement Learning 强化学习分类

    RL分为三大类: (1)通过行为的价值来选取特定行为的方法,具体 包括使用表格学习的 q learning, sarsa, 使用神经网络学习的 deep q network: (2)直接输出行为的 p ...

  3. 【论文研读】强化学习入门之DQN

    最近在学习斯坦福2017年秋季学期的<强化学习>课程,感兴趣的同学可以follow一下,Sergey大神的,有英文字幕,语速有点快,适合有一些基础的入门生. 今天主要总结上午看的有关DQN ...

  4. 强化学习入门基础-马尔可夫决策过程(MDP)

    作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...

  5. gym强化学习入门demo——随机选取动作 其实有了这些动作和反馈值以后就可以用来训练DNN网络了

    # -*- coding: utf-8 -*- import gym import time env = gym.make('CartPole-v0') observation = env.reset ...

  6. DQN(Deep Q-learning)入门教程(一)之强化学习介绍

    什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作 ...

  7. <Machine Learning - 李宏毅> 学习笔记

    <Machine Learning - 李宏毅> 学习笔记 b站视频地址:李宏毅2019国语 第一章 机器学习介绍 Hand crafted rules Machine learning ...

  8. 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程

    写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...

  9. 强化学习 reinforcement learning: An Introduction 第一章, tic-and-toc 代码示例 (结构重建版,注释版)

    强化学习入门最经典的数据估计就是那个大名鼎鼎的  reinforcement learning: An Introduction 了,  最近在看这本书,第一章中给出了一个例子用来说明什么是强化学习, ...

随机推荐

  1. LinuxMint 19/Ubuntu 19.10重置开始菜单以及任务栏

    ====================== 问题:任务栏以及开始菜单弄不见了 解决方法: 快捷键打开终端,输入重置命令: dconf reset -f /

  2. Qt 入门 ---- 如何在程序窗口显示图片?

    步骤: 1. 选择资源(准备图片) 2. 加载资源(导入图片) 3. 使用资源(显示图片) 具体操作流程: ① 从网上寻找合适的图片素材,下载到本地,在项目根目录下创建一个images文件夹存储程序中 ...

  3. JavaScript关于对象的一些小知识

    javascript的对象 javascriot(之后用js代替)中基本数据类型之一,是复合类型的数据. 对象在js中应用十分广泛,几乎所有的的事物都是做对象,js的对象拥有自己的属性和方法的数据 在 ...

  4. vscode安装ESlint配置

    先安装插件ESLint,后面在设置setting.json中配置加入代码: { "files.autoSave": "afterDelay", "ed ...

  5. Android 开发必备的知识点——JVM基础【转】

    image 1.JVM与操作系统的关系 Java Virtual Machine JVM 全称 Java Virtual Machine,也就是我们耳熟能详的 Java 虚拟机.它能识别 .class ...

  6. 🔥 LeetCode 热题 HOT 100(31-40)

    75. 颜色分类 思路:将 2 往后放,0 往前放,剩余的1自然就放好了. 使用双指针:left.right 分别指向待插入的 0 和 2 的位置,初始 left 指向数组头,right 指向数组尾部 ...

  7. Linux--文件描述符、文件指针、索引节点

    Linux -- 文件描述符 文件描述符 Fd 当进程打开文件或创建新文件时,内核会返回一个文件描述符(非负整数),用来指向被打开的文件,所有执行I/O操作的系统调用(read.write)都会通过文 ...

  8. NDIS LWF:NdisFSendNetBufferLists蓝屏(DRIVER_IRQL_NOT_EQUAL_OR_LESS)

    调用NdisFSendNetBufferLists发送自定义数据包后蓝屏,蓝屏代码为DRIVER_IRQL_NOT_EQUAL_OR_LESS,如果创建的NBL都没问题,一定要确保该自定义的NBL要在 ...

  9. C++ 结构体+数组+取随机数 案例(打印3名老师 带着 5名学生)结构体

    1 //结构体案列 2 3 #include<iostream> 4 #include<string> 5 #include<ctime> 6 using name ...

  10. 双非本科字节跳动Android面试经验和心得体会分享(已拿offer)

    新人报道,没有什么可分享的,就记录一些自己求职的体会和心得. 我是在校招补录的时候参加了今日头条的招聘,岗位是Android开发,最后成功拿到了入场券.但是这也丝毫不值得骄傲,大家都知道:技术日新月异 ...