Reinforcement Learning 强化学习入门
https://www.zhihu.com/question/277325426
https://github.com/jinglescode/reinforcement-learning-tic-tac-toe/blob/master/README.md
Intuition
After a long day at work, you are deciding between 2 choices: to head home and write a Medium article or hang out with friends at a bar. If you choose to hang out with friends, your friends will make you feel happy; whereas heading home to write an article, you’ll end up feeling tired after a long day at work. In this example, enjoying yourself is a reward and feeling tired is viewed as a negative reward, so why write articles?
Because in life, we don’t just think about immediate rewards; we plan a course of actions to determine the possible future rewards that may follow. Perhaps writing an article may brush up your understanding of a particular topic really well, get recognised and ultimately lands you that dream job you’ve always wanted. In this scenario, getting your dream job is a delayed reward from a list of actions you took, then we want to assign some value for being at those states (for example “going home and write an article”). In order to determine the value of a state, we call this the “value function”.
So how do we learn from our past? Let’s say you made some great decisions and are in the best state of your life. Now look back at the various decisions you’ve made to reach this stage: what do you attribute your success to? What are the previous states that led you to this success? What are the actions you did in the past that led you to this state of receiving this reward? How is the action you are doing now related to the potential reward you may receive in the future?
Reinforcement Learning — Implement TicTacToe
How to use reinforcement learning to play tic-tac-toe
https://github.com/MJeremy2017/reinforcement-learning-implementation/tree/master/TicTacToe
直接看这个「井字棋」的代码,结合反复阅读这几篇文章,慢慢理解 Q-Learning 是个什么东西,每个参数的意义又是什么。
https://github.com/ZuzooVn/machine-learning-for-software-engineers
https://machinelearningmastery.com/machine-learning-for-programmers/#comment-358985
https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56
What’s ‘Q’?
The ‘q’ in q-learning stands for quality. Quality in this case represents how useful a given action is in gaining some future reward.
How Does Learning Rate Decay Help Modern Neural Networks?
https://smartlabai.medium.com/reinforcement-learning-algorithms-an-intuitive-overview-904e2dff5bbc
RL 分为 Model-free 和 Model-based 两类
Q-Learning 就属于 Model-free
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/code/code2nd.html
Reinforcement Learning 强化学习入门的更多相关文章
- [Reinforcement Learning] 强化学习介绍
随着AlphaGo和AlphaZero的出现,强化学习相关算法在这几年引起了学术界和工业界的重视.最近也翻了很多强化学习的资料,有时间了还是得自己动脑筋整理一下. 强化学习定义 先借用维基百科上对强化 ...
- The categories of Reinforcement Learning 强化学习分类
RL分为三大类: (1)通过行为的价值来选取特定行为的方法,具体 包括使用表格学习的 q learning, sarsa, 使用神经网络学习的 deep q network: (2)直接输出行为的 p ...
- 【论文研读】强化学习入门之DQN
最近在学习斯坦福2017年秋季学期的<强化学习>课程,感兴趣的同学可以follow一下,Sergey大神的,有英文字幕,语速有点快,适合有一些基础的入门生. 今天主要总结上午看的有关DQN ...
- 强化学习入门基础-马尔可夫决策过程(MDP)
作者:YJLAugus 博客: https://www.cnblogs.com/yjlaugus 项目地址:https://github.com/YJLAugus/Reinforcement-Lear ...
- gym强化学习入门demo——随机选取动作 其实有了这些动作和反馈值以后就可以用来训练DNN网络了
# -*- coding: utf-8 -*- import gym import time env = gym.make('CartPole-v0') observation = env.reset ...
- DQN(Deep Q-learning)入门教程(一)之强化学习介绍
什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作 ...
- <Machine Learning - 李宏毅> 学习笔记
<Machine Learning - 李宏毅> 学习笔记 b站视频地址:李宏毅2019国语 第一章 机器学习介绍 Hand crafted rules Machine learning ...
- 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程
写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...
- 强化学习 reinforcement learning: An Introduction 第一章, tic-and-toc 代码示例 (结构重建版,注释版)
强化学习入门最经典的数据估计就是那个大名鼎鼎的 reinforcement learning: An Introduction 了, 最近在看这本书,第一章中给出了一个例子用来说明什么是强化学习, ...
随机推荐
- (原创)[.Net] 进程间通信框架(基于共享内存)——SimpleMMF
一.前言 进程间通信技术的应用非常广泛,在Windows下常用的实现方式有:管道.Socket.消息.本地文件.共享内存等,每种方式都有各自适应的场景. 在进行大数据交换时,最优的方式便是共享内存. ...
- Centos忘记密码怎么修改
使用Centos系统忘记密码 在我们日常使用Centos系统时,有些人不免会出现一个共同的问题:忘记登录密码! 我们总不能再重装一遍吧! 接下来我们就分两种情况来看看: Centos系统在云服务器 C ...
- onethink-i春秋
记一道onethink漏洞拿flag的题. 因为用户名长度被限制了,注册两个账号分别为 %0a$a=$_GET[a];// %0aecho `$a`;// #(%0a是换行符的urlencode) 点 ...
- Use w3m as Web Browser
Installation: apt-get install w3m. use "a" to input text, "tab" to jump between ...
- 深入理解SPI机制
一.什么是SPI SPI ,全称为 Service Provider Interface,是一种服务发现机制.它通过在ClassPath路径下的META-INF/services文件夹查找文件,自动加 ...
- Android消息机制1-Handler(Java层)
一.概述 在整个Android的源码世界里,有两大利剑,其一是Binder IPC机制,,另一个便是消息机制(由Handler/Looper/MessageQueue等构成的). Android有大量 ...
- QT从入门到入土(八)——项目打包和发布
引言 新手上路可谓是困难重重,你永远不知道下一个困难会在什么时候出现,在完成了运动控制卡封装发布过程中可谓是举步维艰.因此记录一下qt5+vs2019的打包发布方法. 打包一般分为两步: 将编译后的e ...
- MATLAB—二维函数可视化
本文主要总结一下MATLAB的一些常用二维绘图指令. 文章目录 一.plot绘图指令 1.离散数据点形设置值 2.连续线型设置值 3.颜色设置值 4.常用属性和属性值 5.例题 二.subplot绘图 ...
- dockerfile中ENTRYPOINT与CMD的结合
一.写在前面 我们在上篇小作文docker容器dockerfile详解对中dockerfile有了比较全面的认识,我们也提到ENTRYPOINT和CMD都可以指定容器启动命令.因为这两个命令是掌握do ...
- MySQL自定义函数与存储过程的创建、使用、删除
前言 日常开发中,可能会用到数据库的自定义函数/存储过程,本文记录MySQL对自定义函数与存储过程的创建.使用.删除的使用 通用语法 事实上,可以认为存储过程就是没有返回值的函数,创建/使用/删除都非 ...