javaCV图像处理之Frame、Mat和IplImage三者相互转换(使用openCV进行Mat和IplImage转换)
前言:本篇文章依赖四个jar包,其中javacv.jar,javacpp.jar和opencv.jar为固定jar包,opencv-系统环境.jar为选配(根据自己的系统平台,x64还是x86而定)
须知:
OpenCVFrameConverter.ToIplImage可以用于将Frame转换为Mat和IplImage,Mat和IplImage转为Frame
Mat和IplImage之间的转换可以使用opeoCV库中提供的功能
使用方式:
static OpenCVFrameConverter.ToIplImage converter = new OpenCVFrameConverter.ToIplImage();
public static void converter(Frame frame) {
		// 将Frame转为Mat
		Mat mat = converter.convertToMat(frame);
		// 将Mat转为Frame
		Frame convertFrame1 = converter.convert(mat);
		// 将Frame转为IplImage
		IplImage image1 = converter.convertToIplImage(frame);
		IplImage image2 = converter.convert(frame);
		// 将IplImage转为Frame
		Frame convertFrame2 = converter.convert(image1);
		//Mat转IplImage
		IplImage matImage = new IplImage(mat);
		//IplImage转Mat
		Mat mat2 = new Mat(matImage);
	}
测试:
public static void main(String[] args) throws Exception {
		// 抓取取本机摄像头
		OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(0);
		grabber.start();
		//取一帧视频(图像)
		converter(grabber.grab());
		grabber.stop();
	}
源码一览:
/**
 * A utility class to map data between {@link Frame} and {@link IplImage} or {@link Mat}.
 * Since this is an abstract class, one must choose between two concrete classes:
 * {@link ToIplImage} or {@link ToMat}.
 *
 * @author Samuel Audet
 */
public abstract class OpenCVFrameConverter<F> extends FrameConverter<F> {
    IplImage img;
    Mat mat;
    public static class ToIplImage extends OpenCVFrameConverter<IplImage> {
        @Override public Frame convert(IplImage img) { return super.convert(img); }
        @Override public IplImage convert(Frame frame) { return convertToIplImage(frame); }
    }
    public static class ToMat extends OpenCVFrameConverter<Mat> {
        @Override public Frame convert(Mat mat) { return super.convert(mat); }
        @Override public Mat convert(Frame frame) { return convertToMat(frame); }
    }
    public static int getFrameDepth(int depth) {
        switch (depth) {
            case IPL_DEPTH_8U:  case CV_8U:  return Frame.DEPTH_UBYTE;
            case IPL_DEPTH_8S:  case CV_8S:  return Frame.DEPTH_BYTE;
            case IPL_DEPTH_16U: case CV_16U: return Frame.DEPTH_USHORT;
            case IPL_DEPTH_16S: case CV_16S: return Frame.DEPTH_SHORT;
            case IPL_DEPTH_32F: case CV_32F: return Frame.DEPTH_FLOAT;
            case IPL_DEPTH_32S: case CV_32S: return Frame.DEPTH_INT;
            case IPL_DEPTH_64F: case CV_64F: return Frame.DEPTH_DOUBLE;
            default: return -1;
        }
    }
    public static int getIplImageDepth(int depth) {
        switch (depth) {
            case Frame.DEPTH_UBYTE:  return IPL_DEPTH_8U;
            case Frame.DEPTH_BYTE:   return IPL_DEPTH_8S;
            case Frame.DEPTH_USHORT: return IPL_DEPTH_16U;
            case Frame.DEPTH_SHORT:  return IPL_DEPTH_16S;
            case Frame.DEPTH_FLOAT:  return IPL_DEPTH_32F;
            case Frame.DEPTH_INT:    return IPL_DEPTH_32S;
            case Frame.DEPTH_DOUBLE: return IPL_DEPTH_64F;
            default:  return -1;
        }
    }
    static boolean isEqual(Frame frame, IplImage img) {
        return img != null && frame != null && frame.image != null && frame.image.length > 0
                && frame.imageWidth == img.width() && frame.imageHeight == img.height()
                && frame.imageChannels == img.nChannels() && getIplImageDepth(frame.imageDepth) == img.depth()
                && new Pointer(frame.image[0]).address() == img.imageData().address()
                && frame.imageStride * Math.abs(frame.imageDepth) / 8 == img.widthStep();
    }
    public IplImage convertToIplImage(Frame frame) {
        if (frame == null || frame.image == null) {
            return null;
        } else if (frame.opaque instanceof IplImage) {
            return (IplImage)frame.opaque;
        } else if (!isEqual(frame, img)) {
            int depth = getIplImageDepth(frame.imageDepth);
            img = depth < 0 ? null : IplImage.createHeader(frame.imageWidth, frame.imageHeight, depth, frame.imageChannels)
                    .imageData(new BytePointer(new Pointer(frame.image[0].position(0))))
                    .widthStep(frame.imageStride * Math.abs(frame.imageDepth) / 8)
                    .imageSize(frame.image[0].capacity() * Math.abs(frame.imageDepth) / 8);
        }
        return img;
    }
    public Frame convert(IplImage img) {
        if (img == null) {
            return null;
        } else if (!isEqual(frame, img)) {
            frame = new Frame();
            frame.imageWidth = img.width();
            frame.imageHeight = img.height();
            frame.imageDepth = getFrameDepth(img.depth());
            frame.imageChannels = img.nChannels();
            frame.imageStride = img.widthStep() * 8 / Math.abs(frame.imageDepth);
            frame.image = new Buffer[] { img.createBuffer() };
            frame.opaque = img;
        }
        return frame;
    }
    public static int getMatDepth(int depth) {
        switch (depth) {
            case Frame.DEPTH_UBYTE:  return CV_8U;
            case Frame.DEPTH_BYTE:   return CV_8S;
            case Frame.DEPTH_USHORT: return CV_16U;
            case Frame.DEPTH_SHORT:  return CV_16S;
            case Frame.DEPTH_FLOAT:  return CV_32F;
            case Frame.DEPTH_INT:    return CV_32S;
            case Frame.DEPTH_DOUBLE: return CV_64F;
            default:  return -1;
        }
    }
    static boolean isEqual(Frame frame, Mat mat) {
        return mat != null && frame != null && frame.image != null && frame.image.length > 0
                && frame.imageWidth == mat.cols() && frame.imageHeight == mat.rows()
                && frame.imageChannels == mat.channels() && getMatDepth(frame.imageDepth) == mat.depth()
                && new Pointer(frame.image[0]).address() == mat.data().address()
                && frame.imageStride * Math.abs(frame.imageDepth) / 8 == (int)mat.step();
    }
    public Mat convertToMat(Frame frame) {
        if (frame == null || frame.image == null) {
            return null;
        } else if (frame.opaque instanceof Mat) {
            return (Mat)frame.opaque;
        } else if (!isEqual(frame, mat)) {
            int depth = getMatDepth(frame.imageDepth);
            mat = depth < 0 ? null : new Mat(frame.imageHeight, frame.imageWidth, CV_MAKETYPE(depth, frame.imageChannels),
                    new Pointer(frame.image[0].position(0)), frame.imageStride * Math.abs(frame.imageDepth) / 8);
        }
        return mat;
    }
    public Frame convert(Mat mat) {
        if (mat == null) {
            return null;
        } else if (!isEqual(frame, mat)) {
            frame = new Frame();
            frame.imageWidth = mat.cols();
            frame.imageHeight = mat.rows();
            frame.imageDepth = getFrameDepth(mat.depth());
            frame.imageChannels = mat.channels();
            frame.imageStride = (int)mat.step() * 8 / Math.abs(frame.imageDepth);
            frame.image = new Buffer[] { mat.createBuffer() };
            frame.opaque = mat;
        }
        return frame;
    }
}												
											javaCV图像处理之Frame、Mat和IplImage三者相互转换(使用openCV进行Mat和IplImage转换)的更多相关文章
- opencv中Mat与IplImage,CVMat类型之间转换
		
opencv中对图像的处理是最基本的操作,一般的图像类型为IplImage类型,但是当我们对图像进行处理的时候,多数都是对像素矩阵进行处理,所以这三个类型之间的转换会对我们的工作带来便利. Mat类型 ...
 - IplImage, CvMat, Mat 的关系和相互转换(转)
		
(看到的一篇非常好的文章,讲opencv内部类之间的关系的.) opencv中常见的与图像操作有关的数据容器有Mat,cvMat和IplImage,这三种类型都可以代表和显示图像,但是,Mat类型侧重 ...
 - opencv基础知识------IplImage, CvMat, Mat 的关系和相互转换
		
Mat,cvMat和IplImage这三种类型都可以代表和显示图像,但是,Mat类型侧重于计算,数学性较高,openCV对Mat类型的计算也进行了优化.而CvMat和IplImage类型更侧重于“图像 ...
 - OpenCV中Mat的详解
		
每次碰到Mat都得反复查具体的用法,网上的基础讲解不多,难得看到一篇,赶快转来收藏~ 原文地址:http://www.opencvchina.com/thread-1039-1-1.html 目标 我 ...
 - opencv:Mat对象
		
Mat对象:图像文件的内存数据对象 读取为 Mat 对象 读取图像位Mat对象,获取图像的相关信息 #include <opencv2/opencv.hpp> #include <i ...
 - opencv数据结构-MAT结构详解
		
1.定义 OpenCV中的C结构体有 CvMat 和 CvMatND,但后续的应用中指出 CvMat 和 CvMatND 弃用了,在C++封装中用 Mat 代替,另外旧版还有一个 IplImage,同 ...
 - OpenCV(2)-Mat数据结构及访问Mat中像素
		
Mat数据结构 一开始OpenCV是基于C语言的,在比较早的教材例如<学习OpenCV>中,讲解的存储图像的数据结构还是IplImage,这样需要手动管理内存.现在存储图像的基本数据结构是 ...
 - OpenCV中Mat总结
		
一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘 ...
 - OpenCV中Mat的使用
		
一.数字图像存储概述 数字图像存储时,我们存储的是图像每个像素点的数值,对应的是一个数字矩阵. 二.Mat的存储 1.OpenCV1基于C接口定义的图像存储格式IplImage*,直接暴露内存,如果忘 ...
 
随机推荐
- ClickHouse 快速入门
			
ClickHouse 是什么 ClickHouse 是一个开源的面向联机分析处理(OLAP, On-Line Analytical Processing) 的列式存储数据库管理系统. 在一个 &quo ...
 - python——面向对象相关
			
其他相关 一.isinstance(obj, cls) 检查是否obj是否是类 cls 的对象 1 2 3 4 5 6 class Foo(object): pass obj = Foo( ...
 - focus、blur事件的事件委托处理(兼容各个流浏览器)
			
今天工作中遇到个问题,问题是这样的,一个form表单中有比较多的input标签,因为form中的input标签中的值都需要前端做客户端校验,由于本人比较懒而且特不喜欢用循环给 每个input元素添加b ...
 - OSI七层模型学习笔记
			
1.简介 什么是OSI模型呢? OSI模型全名Open System InterConnect 即开放式系统互联,是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互连为网络的标准框架, ...
 - hdu2444二分图最大匹配+判断二分图
			
There are a group of students. Some of them may know each other, while others don't. For example, A ...
 - 编写一个简单的java服务器程序
			
import java.net.*;import java.io.*; public class server{ ); //监听在80端口 Socket sock = server.accept(); ...
 - Python简要学习笔记
			
1.搭建学习环境 推荐ActivePython,虽然此乃为商业产品,却是一个有自由软件版权保证的完善的Python开发环境,关键是文档以及相关模块的预设都非常齐备. ActivePython下载地址: ...
 - css中最基本几个选择器
			
css中有四种不同的选择器 ①类选择器,又叫class选择器.类选择器{属性名:属性值:...}/*类选择器*/.s1{ font-weight:bold;font-size:16px;}②id选择器 ...
 - springcloud(三):服务提供与调用
			
上一篇文章我们介绍了eureka服务注册中心的搭建,这篇文章介绍一下如何使用eureka服务注册中心,搭建一个简单的服务端注册服务,客户端去调用服务使用的案例. 案例中有三个角色:服务注册中心.服务提 ...
 - EntityFramework6.X 之LocalDB&ConnectionString
			
LocalDB 面向开发人员的SQL Server Express的执行模式,它的安装将复制启动SQL Server数据库引擎所需的最少文件集且使用特定连接字符串来启动连接,它是可以创建和打开SQL ...