左外链接(leftOuterJoin) spark实现

package com.kangaroo.studio.algorithms.join;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2; import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set; public class LeftOuterJoinSpark { private JavaSparkContext jsc;
private String usersInputFile;
private String transactionsInputFile; public LeftOuterJoinSpark(String usersInputFile, String transactionsInputFile) {
this.jsc = new JavaSparkContext();
this.usersInputFile = usersInputFile;
this.transactionsInputFile = transactionsInputFile;
} public void run() {
/*
* 读入users文件, 文件有两列, userId和location, 以制表符\t分割, 形如:
* u1 UT
* u2 GA
* u3 GA
* */
JavaRDD<String> users = jsc.textFile(usersInputFile, 1); /*
* 将字符串切分为kv对
* 输入: line字符串
* 输出: (userId, ("L", location)), 其中L标识这是一个location, 后面会有"P"标识这是一个product
* ("u1", ("L", "UT"))
* ("u2", ("L", "GA"))
* ("u3", ("L", "GA"))
* */
JavaPairRDD<String, Tuple2<String, String>> usersRDD = users.mapToPair(new PairFunction<String, String, Tuple2<String, String>>() {
public Tuple2<String, Tuple2<String, String>> call(String s) throws Exception {
String[] userRecord = s.split("\t");
String userId = userRecord[0];
Tuple2<String, String> location = new Tuple2<String, String>("L", userRecord[1]);
return new Tuple2<String, Tuple2<String, String>>(userId, location);
}
}); /*
* 读入transattion文件, 文件有4列, transactionIdproductId/userId/price, 以制表符\t分割
* t1 p3 u1 300
* t2 p1 u2 400
* t3 p1 u3 200
* */
JavaRDD<String> transactions = jsc.textFile(transactionsInputFile, 1); /*
* 将字符串切分为kv对
* 输入: line字符串
* 输出: (userId, ("P", productId)), "P"标识这是一个product
* ("u1", ("P", "p3"))
* ("u2", ("P", "p1"))
* ("u3", ("P", "p1"))
* */
JavaPairRDD<String, Tuple2<String, String>> transactionsRDD = transactions.mapToPair(new PairFunction<String, String, Tuple2<String, String>>() {
public Tuple2<String, Tuple2<String, String>> call(String s) throws Exception {
String[] transactionRecord = s.split("\t");
String userId = transactionRecord[2];
Tuple2<String, String> product = new Tuple2<String, String>("P", transactionRecord[1]);
return new Tuple2<String, Tuple2<String, String>>(userId, product);
}
}); /*
* 创建users和transaction的一个并集
* 输入:
* transaction ("u1", ("P", "p3"))
* users ("u1", ("L", "UT"))
* 输出:
* (userId, ("L", location))
* (userId, ("P", product))
* */
JavaPairRDD<String, Tuple2<String, String>> allRDD = transactionsRDD.union(usersRDD); /*
* 按照userId进行分组
* 输入:
* (userId, ("L", location))
* (userId, ("P", product))
* 输出:
* (userId, List[
* ("L", location),
* ("P", p1),
* ("P", p2),
* ... ])
* */
JavaPairRDD<String, Iterable<Tuple2<String, String>>> groupedRDD = allRDD.groupByKey(); /*
* 去掉userId, 行程location和product的配对
* 输入:
* (userId, List[
* ("L", location),
* ("P", p1),
* ("P", p2),
* ... ])
* 输出:
* (product1, location1)
* (product1, location2)
* (product2, location1)
* */
JavaPairRDD<String, String> productLocationRDD = groupedRDD.flatMapToPair(new PairFlatMapFunction<Tuple2<String, Iterable<Tuple2<String, String>>>, String, String>() {
public Iterable<Tuple2<String, String>> call(Tuple2<String, Iterable<Tuple2<String, String>>> s) throws Exception {
String userId = s._1;
Iterable<Tuple2<String, String>> pairs = s._2;
String location = "UNKNOWN";
List<String> products = new ArrayList<String>();
for (Tuple2<String, String> t2 : pairs) {
if (t2._1.equals("L")) {
location = t2._2;
} else if (t2._1.equals("P")){
products.add(t2._2);
}
}
List<Tuple2<String, String>> kvList = new ArrayList<Tuple2<String, String>>();
for (String product : products) {
kvList.add(new Tuple2<String, String>(product, location));
}
return kvList;
}
}); /*
* 以productId为key进行分组
* 输入:
* (product1, location1)
* (product1, location2)
* (product2, location1)
* 输出:
* (product1, List[
* location1,
* location2,
* ... ])
* */
JavaPairRDD<String, Iterable<String>> productByLocations = productLocationRDD.groupByKey(); /*
* 对location进行去重
* 输出:
* (product1, List[
* location1,
* location2,
* location2,
* ... ])
* 输出:
* (product1, List[
* location1,
* location2,
* ... ])
* */
JavaPairRDD<String, Tuple2<Set<String>, Integer>> productByUniqueLocations = productByLocations.mapValues(new Function<Iterable<String>, Tuple2<Set<String>, Integer>>() {
public Tuple2<Set<String>, Integer> call(Iterable<String> strings) throws Exception {
Set<String> uniqueLocations = new HashSet<String>();
for (String location : strings) {
uniqueLocations.add(location);
}
return new Tuple2<Set<String>, Integer>(uniqueLocations, uniqueLocations.size());
}
}); /*
* 打印结果
* */
List<Tuple2<String, Tuple2<Set<String>, Integer>>> result = productByUniqueLocations.collect();
for (Tuple2<String, Tuple2<Set<String>, Integer>> t : result) {
// productId
System.out.println(t._1);
// locationSet和size
System.out.println(t._2);
}
} public static void main(String[] args) {
String usersInputFile = args[0];
String transactionsInputFile = args[1];
LeftOuterJoinSpark leftOuterJoinSpark = new LeftOuterJoinSpark(usersInputFile, transactionsInputFile);
leftOuterJoinSpark.run();
}
}

大数据算法设计模式(2) - 左外链接(leftOuterJoin) spark实现的更多相关文章

  1. 大数据算法设计模式(1) - topN spark实现

    topN算法,spark实现 package com.kangaroo.studio.algorithms.topn; import org.apache.spark.api.java.JavaPai ...

  2. 大数据算法->推荐系统常用算法之基于内容的推荐系统算法

    港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一 ...

  3. 滴滴大数据算法大赛Di-Tech2016参赛总结

    https://www.jianshu.com/p/4140be00d4e3 题目描述 建模方法 特征工程 我的几次提升方法 从其他队伍那里学习到的提升方法 总结和感想 神经网络方法的一点思考 大数据 ...

  4. MySQL☞左外链接与右外连接

    外链接查询:即要查询有关联关系的数据,还要查询没有关联关系的数据.(个人理解为:表A和表B两个关联的列中)如下图: emmm,简单的来说两个表的关联关系:book.bid=bookshop.id,他们 ...

  5. sql 三表左外链接的2种写法【原】

    初始化语句 DROP TABLE student; ) )); ','bobo'); ','sisi'); ','gugu'); ','mimi'); DROP TABLE room; ) ),roo ...

  6. 大数据与可靠性会碰撞出什么样的Spark?

    可靠性工程领域的可靠性评估,可靠性仿真计算,健康检测与预管理(PHM)技术,可靠性试验,都需要大规模数据来进行支撑才能产生好的效果,以往这些数据都是不全并且收集困难,而随着互联网+的大数据时代的来临, ...

  7. 大数据技术之_19_Spark学习_01_Spark 基础解析 + Spark 概述 + Spark 集群安装 + 执行 Spark 程序

    第1章 Spark 概述1.1 什么是 Spark1.2 Spark 特点1.3 Spark 的用户和用途第2章 Spark 集群安装2.1 集群角色2.2 机器准备2.3 下载 Spark 安装包2 ...

  8. 一文看懂大数据的技术生态Hadoop, hive,spark都有了[转]

    大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可 ...

  9. 浅析大数据的技术生态圈(Hadoop,hive,spark)

    大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它比作一个厨房所以需要的各种工具.锅碗瓢盆,各有各的用处,互相之间又有重合.你可 ...

随机推荐

  1. 安装JDK详细步骤,以及环境变量配置

    1.JDK 1)下载:http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 点击同意, ...

  2. yum仓库的定制

    矮哥linux运维群: 93324526 笔者QQ:578843228 一.简介 软件包的分类.源码包脚本安装二进制包(rpm包.系统默认包) 源码包: C语言的源代码优点:开源,如果有能力,可以修改 ...

  3. 团队作业4——第一次项目冲刺 FiRsT DaY

    项目冲刺--first blood 今天是阳光明媚的一天[明明是阴天好吗= =],今天是心情愉悦的一天[每天都要提交博客高兴个水水哦-3-] 天霸动霸.tua小队迎来了第一敏捷冲刺,小伙伴们是时候打起 ...

  4. Matlab生成.exe可执行程序

    由于在教学过程中需要演示Matlab程序,而教学机又未安装Matlab程序,因此有必要将Matlab程序生成.exe可执行程序,便于直接执行. 在Matlab中提供了Complier,可直接使用. ( ...

  5. 201521123070 《JAVA程序设计》第7周学习总结

    1. 本章学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 Q1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码: pub ...

  6. 201521123007《Java程序设计》第2周学习总结

    1.本周学习总结 类名第一个字母大写,类名下的方法如main第一个字母要小写: Java有三种基本数据类型:整型(byte,short,int,long,char),浮点型(float,double) ...

  7. linux(CentOS5.8)环境下搭建Radius

    本文记录了freeRadius在CentOS5.8环境下的基本搭建过程,未涉及mysql的加入及配置 freeradius官方地址:http://freeradius.org/ 环境:CentOS5. ...

  8. [01] Pattern类和Matcher类

    在Java中,有个java.util.regex包,这是一个用正则表达式所订制的模式来对字符串进行匹配工作的类库包. 它主要有两个类: Pattern   一个正则表达式经编译后的表现模式,可以理解为 ...

  9. 06jQuery-06-AJAX

    1.JS的AJAX AJAX,Asynchronous JavaScript and XML,意思就是用JavaScript执行异步网络请求. 如果要让用户留在当前页面中,同时发出新的HTTP请求,就 ...

  10. Java main方法继承

    java中main方法是可以继承的 Test1.java package Variables; public class Test1 { public static void main(String[ ...