2017 ICPC 广西邀请赛1004 Covering
Covering
Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 187 Accepted Submission(s): 107
To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets.
Meanwhile, Bob is a mean boy, so he acquired that his carpets can not overlap one cell twice or more.
He has infinite carpets with sizes of 1×2 and 2×1, and the size of the playground is 4×n.
Can you tell Bob the total number of schemes where the carpets can cover the playground completely without overlapping?
Each test case only contains one positive integer n in a line.
1≤n≤1018
2
5
/*
* @Author: Administrator
* @Date: 2017-08-31 17:40:04
* @Last Modified by: Administrator
* @Last Modified time: 2017-09-01 11:03:00
*/
/*
题意:给你一个4*n的矩阵,然后让你用1*2和2*1的木块放,问你完美覆盖的
方案数 思路:状压DP找规律
*/ #include <bits/stdc++.h> #define MAXN 100
#define MAXM 20
#define MAXK 15
using namespace std; int dp[MAXN][MAXM];//dp[i][j]表示前ihang
int n; inline bool ok(int x){
//判断是不是有连续个1的个数是奇数
int res=;
while(x){
if(x%==){
res++;
}else{
if(res%==) return false;
else res=;
}
x/=;
}
if(res%==) return false;
else return true;
} inline void init(){
memset(dp,,sizeof dp);
} int main(){
freopen("in.txt","r",stdin);
for(int n=;n<=;n++){
init();
for(int i=;i<=MAXK;i++){//初始化第一行的没种状态
if(ok(i)==true)
dp[][i]=;
}
for(int i=;i<n;i++){
for(int j=;j<=MAXK;j++){
if(dp[i][j]!=){
for(int k=;k<=MAXK;k++){
if( (j|k)==MAXK && ok(j&k) )
///j|k==tot-1的话就是能拼起来组成
dp[i+][k]+=dp[i][j];
}
}
}
}
printf("%d\n",dp[n][MAXK]);
}
return ;
}
/*
* @Author: Administrator
* @Date: 2017-09-01 11:17:37
* @Last Modified by: Administrator
* @Last Modified time: 2017-09-01 11:28:09
*/
#include <bits/stdc++.h> #define MAXN 5
#define mod 1000000007
#define LL long long using namespace std; /********************************矩阵快速幂**********************************/
class Matrix {
public:
LL a[MAXN][MAXN];
LL n; void init(LL x) {
memset(a,,sizeof(a));
if (x)
for (int i = ; i < MAXN ; i++)
a[i][i] = 1LL;
} Matrix operator +(Matrix b) {
Matrix c;
c.n = n;
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
c.a[i][j] = (a[i][j] + b.a[i][j]) % mod;
return c;
} Matrix operator +(LL x) {
Matrix c = *this;
for (int i = ; i < n; i++)
c.a[i][i] += x;
return c;
} Matrix operator *(Matrix b)
{
Matrix p;
p.n = b.n;
p.init();
for (int i = ; i < n; i++)
for (int j = ; j < n; j++)
for (int k = ; k < n; k++)
p.a[i][j] = (p.a[i][j] + (a[i][k]*b.a[k][j])%mod) % mod;
return p;
} Matrix power(LL t) {
Matrix ans,p = *this;
ans.n = p.n;
ans.init();
while (t) {
if (t & )
ans=ans*p;
p = p*p;
t >>= ;
}
return ans;
}
}init,unit;
/********************************矩阵快速幂**********************************/ LL n; int main(){
// freopen("in.txt","r",stdin);
while(scanf("%lld",&n)!=EOF){
if(n<=){
switch(n){
case :
puts("");
break;
case :
puts("");
break;
case :
puts("");
break;
case :
puts("");
break;
}
continue;
}
init.init();
init.n=;
init.a[][]=;
init.a[][]=;
init.a[][]=;
init.a[][]=;
unit.init();
unit.n=;
unit.a[][]=;
unit.a[][]=;
unit.a[][]=;
unit.a[][]=-;
unit.a[][]=;
unit.a[][]=;
unit.a[][]=;
unit=unit.power(n-);
init=init*unit;
printf("%lld\n",(init.a[][]+mod)%mod);
}
return ;
}
2017 ICPC 广西邀请赛1004 Covering的更多相关文章
- 2017ACM/ICPC广西邀请赛 1004 Covering
Covering Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 2017 ICPC 广西邀请赛1005 CS Course
CS Course Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total S ...
- 2017ACM/ICPC广西邀请赛-重现赛 1004.Covering
Problem Description Bob's school has a big playground, boys and girls always play games here after s ...
- 2017 ACM/ICPC 广西邀请赛 题解
题目链接 Problems HDOJ上的题目顺序可能和现场比赛的题目顺序不一样, 我这里的是按照HDOJ的题目顺序来写的. Problem 1001 签到 #include <bits/std ...
- 2017ACM/ICPC广西邀请赛-重现赛(感谢广西大学)
上一场CF打到心态爆炸,这几天也没啥想干的 A Math Problem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- 2017ACM/ICPC广西邀请赛-重现赛 1007.Duizi and Shunzi
Problem Description Nike likes playing cards and makes a problem of it. Now give you n integers, ai( ...
- 2017ACM/ICPC广西邀请赛-重现赛 1010.Query on A Tree
Problem Description Monkey A lives on a tree, he always plays on this tree. One day, monkey A learne ...
- 2017ACM/ICPC广西邀请赛-重现赛
HDU 6188 Duizi and Shunzi 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6188 思路: 签到题,以前写的. 实现代码: #inc ...
- HDU 6191 2017ACM/ICPC广西邀请赛 J Query on A Tree 可持久化01字典树+dfs序
题意 给一颗\(n\)个节点的带点权的树,以\(1\)为根节点,\(q\)次询问,每次询问给出2个数\(u\),\(x\),求\(u\)的子树中的点上的值与\(x\)异或的值最大为多少 分析 先dfs ...
随机推荐
- OC——关于KVC
我们知道在C#中可以通过反射读写一个对象的属性,有时候这种方式特别方便,因为你可以利用字符串的方式去动态控制一个对象.其实由于ObjC的语言特性,你根部不必进行任何操作就可以进行属性的动态读写,这种方 ...
- Python之面向对象与类
本节内容 面向对象的概念 类的封装 类的继承 类的多态 静态方法.类方法 和 属性方法 类的特殊成员方法 子类属性查找顺序 一.面向对象的概念 1. "面向对象(OOP)"是什么? ...
- xml跟sql查找
xml小白笔记 ....... <sql id="wDishesColumns"> a.id AS "id", a.pid AS "pid ...
- this的四种绑定形式
一 , this的默认绑定 当一个函数没有明确的调用对象的时候,也就是单纯作为独立函数调用的时候,将对函数的this使用默认绑定:绑定到全局的window对象. 一个例子 function fire ...
- .NetCore之下载文件
本篇将和大家分享的丝.NetCore下载文件,常见的下载有两种:A标签直接指向下载文件地址和post或get请求后台输出文件流的方式,本篇也将围绕这两种来分享:如果对您有好的帮助,请多多支持. 允许站 ...
- React获得真实的DOM操作
真实的DOM操作 ------------------------------------------------------------------------------------------- ...
- 关于MySQL 事务,视图,索引,数据库备份,恢复
/*创建数据库*/ CREATE DATABASE `mybank`;/*创建表*/USE mybank;CREATE TABLE `bank`( `customerName` CHAR(1 ...
- Android 从ImageView中获取Bitmap对象方法
showImageView.setDrawingCacheEnabled(true); Bitmap bitmap=showImageView.getDrawingCache(); showImage ...
- FPGA在其他领域的应用(三)
广播领域: 专业的A/V(音频/视频),和演播室行业正在经历着激动人心的变化,例如,UHD/8K (超高清)视频.多平台内容交付.IP网络传输和云计算.2016里约奥运会使用4K分辨率视频播放,而日本 ...
- tesseract-ocr字库训练图文讲解
第一步合成图片集 你需要把使用jTessBoxEditor工具把你的训练素材及多张图片合并成一张tif格式的图片集 第二步 生成box文件 运行tesseract命令,tesseract mjorc ...