http://acm.hdu.edu.cn/showproblem.php?pid=4034

Graph

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 2058    Accepted Submission(s): 1030

Problem Description
Everyone knows how to calculate the shortest path in a directed graph. In fact, the opposite problem is also easy. Given the length of shortest path between each pair of vertexes, can you find the original graph?
 
Input
The first line is the test case number T (T ≤ 100).
First line of each case is an integer N (1 ≤ N ≤ 100), the number of vertexes.
Following N lines each contains N integers. All these integers are less than 1000000.
The jth integer of ith line is the shortest path from vertex i to j.
The ith element of ith line is always 0. Other elements are all positive.
 
Output
For each case, you should output “Case k: ” first, where k indicates the case number and counts from one. Then one integer, the minimum possible edge number in original graph. Output “impossible” if such graph doesn't exist.

 
Sample Input
3
3
0 1 1
1 0 1
1 1 0
3
0 1 3
4 0 2
7 3 0
3
0 1 4
1 0 2
4 2 0
 
Sample Output
Case 1: 6
Case 2: 4
Case 3: impossible
 

题意:给出由已知点求出的每个点间的最短路,问你原先的图中最少有几个点

题解:对已经给出的最短路再求一遍最短路用Floyd ,如果在求得过程中发现有dist[i][j]>dist[i][k]+dist[k][j]的情况就说明所给的不是最短的路图,及impossible

而在求解的过程中,当dist[i][j]==dist[i][k]+dist[k][j]的时候说明从i 到j 的长度,可以通过k点到达,故可以将直接相连的i,j去掉,及标记dist[i][j] = INF;

注意两点: 1,可以先将impossible的情况单独先算出来,以防后面对dist[i][j]  = INF ;

2, 当i==j||j==k||j==k 的时候要continue掉,因为这个为0的点会更新其他所有的点

下面是代码

 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
#define N 103
#define INF 0x1fffffff
int mp[N][N];
int dist[N][N];
int main()
{
int i , j , k ;
int n;
int t ;
cin>>t;
int c = ;
while(t--)
{
c++;
scanf("%d",&n);
for( i = ; i < n ;i++)
{
for( j = ; j < n ;j++)
{
scanf("%d",&mp[i][j]);
dist[i][j] = mp[i][j];
}
}
bool flag = true;
for(k = ;flag && k < n ; k++)
{
for(i = ;flag && i < n ; i++)
{
for( j = ; flag&& j < n ;j++)
{
if(dist[i][j]>dist[i][k]+dist[k][j])
flag = false;
}
}
}
int cnt = ;
if(flag)
{
for( k = ; k < n ;k++)
{
for(i = ; i < n ;i++)
{
for(j = ;j < n ;j++)
{
if(i==j||j==k||k==i) continue;
if(dist[i][j]==dist[i][k]+dist[k][j])
{
dist[i][j] = INF;
//printf("%d %d %d\n", k ,i , j);
cnt++;
}
}
}
}
}
if(flag) printf("Case %d: %d\n",c,n*(n-)-cnt);
else printf("Case %d: impossible\n",c); }
return ;
}

Graph(Floyd)的更多相关文章

  1. [CodeForces - 296D]Greg and Graph(floyd)

    Description 题意:给定一个有向图,一共有N个点,给邻接矩阵.依次去掉N个节点,每一次去掉一个节点的同时,将其直接与当前节点相连的边和当前节点连出的边都需要去除,输出N个数,表示去掉当前节点 ...

  2. Graph (floyd)

    Description Everyone knows how to calculate the shortest path in a directed graph. In fact, the oppo ...

  3. WUSTOJ 1326: Graph(Java)费马数

    题目链接:1326: Graph 参考博客:HNUSTOJ-1617 Graph(费马数)--G2MI Description Your task is to judge whether a regu ...

  4. (floyd)佛洛伊德算法

    Floyd–Warshall(简称Floyd算法)是一种著名的解决任意两点间的最短路径(All Paris Shortest Paths,APSP)的算法.从表面上粗看,Floyd算法是一个非常简单的 ...

  5. POJ 2139 Six Degrees of Cowvin Bacon (Floyd)

    题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2.以此类推,a与b之间有n头媒介牛, ...

  6. HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...

  7. Stockbroker Grapevine(floyd)

    http://poj.org/problem?id=1125 题意: 首先,题目可能有多组测试数据,每个测试数据的第一行为经纪人数量N(当N=0时, 输入数据结束),然后接下来N行描述第i(1< ...

  8. 2018 ICPC 沈阳网络预赛 Fantastic Graph (优先队列)

    [传送门]https://nanti.jisuanke.com/t/31447 [题目大意]:有一个二分图,问能不能找到它的一个子图,使得这个子图中所有点的度数在区间[L,R]之内. [题解]首先我们 ...

  9. Floyed(floyd)算法详解

    是真懂还是假懂? Floyed算法:是最短路径算法可以说是最慢的一个. 原理:O(n^3)的for循环,对每一个中间节点k做松弛(寻找更短路径): 但它适合算多源最短路径,即任意两点间的距离. 但sp ...

随机推荐

  1. go实例之线程池

    go语言使用goroutines和channel实现一个工作池相当简单.使用goroutines开指定书目线程,通道分别传递任务和任务结果.简单的线程池代码如下: package main impor ...

  2. nginx编译参数的内容

    最近公司安排我安装几台云服务器环境 采用nginx做反向代理: 查了一下官方文档,参数比较多,很多在上线后 可能才知道注意一下的. 编译安装nginx的话 需要安装一些前置组件: 1.gcc环境:用于 ...

  3. Android Weekly Notes Issue #288

    Android Weekly Issue #288 December 17th, 2017 Android Weekly Issue #288 本期内容主要包括介绍Kotlin DSL使用kotlin ...

  4. 干货分享!关于APP导航菜单设计你应该了解的一切

    导航菜单是人机交互的最主要的桥梁和平台,主要作用是不让用户迷失方向.现在市面上产品的菜单栏种类繁多,到底什么样的才是优秀的导航菜单设计呢?好的菜单设计不仅能提升整个产品的用户体验,而且还能让用户耳目一 ...

  5. [知了堂学习笔记]_用JS制作《飞机大作战》游戏_第1讲(素材查找和界面框架搭建)

    一.查找素材: 二.分析游戏界面框架: 登录界面.游戏界面.暂停游戏界面.玩家死亡后弹出界面:并对应的界面包含什么元素: 三.分别搭建以上四个界面: 1.登录界面与游戏界面框架(隐藏游戏界面,四个界面 ...

  6. 【ASP.NET MVC系列】浅谈NuGet在VS中的运用

    一     概述 在我们讲解NuGet前,我们先来看看一个例子. 1.例子: 假设现在开发一套系统,其中前端框架我们选择Bootstrap,由于选择Bootstrap作为前端框架,因此,在项目中,我们 ...

  7. Socket相关概念

    lsocket的英文原义是“孔”或“插座”.作为进程通信机制,取后一种意思.通常也称作“套接字”,用于描述IP地址和端口,是一个通信链的句柄.(其实就是两个程序通信用的.) lsocket非常类似于电 ...

  8. Regular expressions in lexing and parsing(翻译)

    词法分析和语法分析中的正则表达式 (英文原文来自rob pike 的博客 https://commandcenter.blogspot.jp/2011/08/regular-expressions-i ...

  9. 初学者福音——10个最佳APP开发入门在线学习网站

    根据Payscale的调查显示,现在的APP开发人员的年薪达到:$66,851.这也是为什么那么多初学的开发都想跻身到APP开发这行业的主要原因之一.每当你打开App Store时候,看着琳琅满目的A ...

  10. 4、公司经营的业务来源 - CEO之公司管理经验谈

    公司经营的业务来源为公司的运作资金提供了帮助,一般来说,整个公司的领导层为公司的经营做管理,而业务员就为公司的业务提供来源,然后建设部为业务开展做建设. 一.总经理: 公司的总经理主要负责公司运作经营 ...